paddle2.0高层API实现ResNet50(十二生肖分类实战)

2023-11-23 03:00

本文主要是介绍paddle2.0高层API实现ResNet50(十二生肖分类实战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • paddle2.0高层API实现ResNet50(十二生肖分类实战)
  • ① 问题定义
  • ② 数据准备
    • 2.1 解压缩数据集
    • 2.2 数据标注
    • 2.3 数据集定义
      • 2.3.1 导入相关库
      • 2.3.2 导入数据集的定义实现
      • 2.3.3 实例化数据集类
  • ③ 模型选择和开发
    • 3.1 网络构建
    • 超参数配置
  • ④ 模型训练和优化
    • VisualDL训练过程可视化展示
      • 模型存储
  • ⑤ 模型评估和测试
    • 5.1 批量预测测试
      • 5.1.1 测试数据集
      • 5.1.2 执行预测
  • ⑥ 模型部署
    • MobileNet_V2测试

paddle2.0高层API实现ResNet50(十二生肖分类实战)

『深度学习7日打卡营·快速入门特辑』

零基础解锁深度学习神器飞桨框架高层API,七天时间助你掌握CV、NLP领域最火模型及应用。

  1. 课程地址
    传送门:https://aistudio.baidu.com/aistudio/course/introduce/6771

  2. 目标

  • 掌握深度学习常用模型基础知识
  • 熟练掌握一种国产开源深度学习框架
  • 具备独立完成相关深度学习任务的能力
  • 能用所学为AI加一份年味

① 问题定义

十二生肖分类的本质是图像分类任务,我们采用CNN网络结构进行相关实践。

② 数据准备

2.1 解压缩数据集

我们将网上获取的数据集以压缩包的方式上传到aistudio数据集中,并加载到我们的项目内。

在使用之前我们进行数据集压缩包的一个解压。

!unzip -q -o data/data68755/signs.zip

2.2 数据标注

我们先看一下解压缩后的数据集长成什么样子。

.
├── test
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
├── train
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
└── valid├── dog├── dragon├── goat├── horse├── monkey├── ox├── pig├── rabbit├── ratt├── rooster├── snake└── tiger

数据集分为train、valid、test三个文件夹,每个文件夹内包含12个分类文件夹,每个分类文件夹内是具体的样本图片。

我们对这些样本进行一个标注处理,最终生成train.txt/valid.txt/test.txt三个数据标注文件。

# %cd work
!ls
1512224.ipynb  config.py  data	dataset.py  __MACOSX  __pycache__  signs  work
import io
import os
from PIL import Image
from config import get# 数据集根目录
DATA_ROOT = 'signs'# 标签List
LABEL_MAP = get('LABEL_MAP')# 标注生成函数
def generate_annotation(mode):# 建立标注文件with open('{}/{}.txt'.format(DATA_ROOT, mode), 'w') as f:# 对应每个用途的数据文件夹,train/valid/testtrain_dir = '{}/{}'.format(DATA_ROOT, mode)# 遍历文件夹,获取里面的分类文件夹for path in os.listdir(train_dir):# 标签对应的数字索引,实际标注的时候直接使用数字索引label_index = LABEL_MAP.index(path)# 图像样本所在的路径image_path = '{}/{}'.format(train_dir, path)# 遍历所有图像for image in os.listdir(image_path):# 图像完整路径和名称image_file = '{}/{}'.format(image_path, image)try:# 验证图片格式是否okwith open(image_file, 'rb') as f_img:image = Image.open(io.BytesIO(f_img.read()))image.load()if image.mode == 'RGB':f.write('{}\t{}\n'.format(image_file, label_index))except:continuegenerate_annotation('train')  # 生成训练集标注文件
generate_annotation('valid')  # 生成验证集标注文件
generate_annotation('test')   # 生成测试集标注文件

2.3 数据集定义

接下来我们使用标注好的文件进行数据集类的定义,方便后续模型训练使用。

2.3.1 导入相关库

import paddle
import numpy as np
from config import getpaddle.__version__
'2.0.0'

2.3.2 导入数据集的定义实现

我们数据集的代码实现是在dataset.py中。

数据增强data_augumentation为:

            self.transforms = T.Compose([T.RandomResizedCrop(IMAGE_SIZE),    # 随机裁剪大小T.RandomHorizontalFlip(0.5),        # 随机水平翻转T.ToTensor(),                       # 数据的格式转换和标准化 HWC => CHW  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 图像归一化])
from dataset import ZodiacDataset

2.3.3 实例化数据集类

根据所使用的数据集需求实例化数据集类,并查看总样本量。

train_dataset = ZodiacDataset(mode='train')
valid_dataset = ZodiacDataset(mode='valid')print('训练数据集:{}张;验证数据集:{}张'.format(len(train_dataset), len(valid_dataset)))
训练数据集:7096张;验证数据集:639张

③ 模型选择和开发

3.1 网络构建

本次我们使用ResNet50网络来完成我们的案例实践。

1)ResNet系列网络

2)ResNet50结构

3)残差区块

4)ResNet其他版本

# 请补齐模型实例化代码network = paddle.vision.models.resnet50(num_classes=get('num_classes'), pretrained=True)
100%|██████████| 151272/151272 [00:03<00:00, 41104.37it/s]
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.weight. fc.weight receives a shape [2048, 1000], but the expected shape is [2048, 12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.bias. fc.bias receives a shape [1000], but the expected shape is [12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

模型可视化

model = paddle.Model(network)
model.summary((-1, ) + tuple(get('image_shape')))
-------------------------------------------------------------------------------Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================Conv2D-1        [[1, 3, 224, 224]]   [1, 64, 112, 112]        9,408     BatchNorm2D-1    [[1, 64, 112, 112]]   [1, 64, 112, 112]         256      ReLU-1        [[1, 64, 112, 112]]   [1, 64, 112, 112]          0       MaxPool2D-1     [[1, 64, 112, 112]]    [1, 64, 56, 56]           0       Conv2D-3        [[1, 64, 56, 56]]     [1, 64, 56, 56]         4,096     BatchNorm2D-3     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-2         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-4        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-4     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-5        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-5     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     Conv2D-2        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-2     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-1   [[1, 64, 56, 56]]     [1, 256, 56, 56]          0       Conv2D-6        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-6     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-3         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-7        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-7     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-8        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-8     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-2   [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-9        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-9     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-4         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-10       [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-10     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-11       [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384   

这篇关于paddle2.0高层API实现ResNet50(十二生肖分类实战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414875

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount