【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例

本文主要是介绍【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

条件生成对抗网络(Conditional Generative Adversarial Nets,简称CGAN)是GAN的改进。

举例如图所示,如果使用Minist数据集

  • 在GAN中,在训练时,随机初始化一个和图片大小一致的矩阵和原始图片的矩阵进行博弈,产生一个新的类似于原始图片的网络。
  • 在Conditional GAN中,在训练时,会同时输入label,告诉当前网络生成的图片是数字8,而不是生成其他数字的图片

在这里插入图片描述

图1 GAN原理图

在这里插入图片描述

图2 Conditional GAN原理图

2 实现

Github源码

Mian.py

指定条件即条件输入是Label


import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist,mnist
import utils
from models import build_discriminator_model,build_generator_model
import numpy as np# 图片维度
noise_dim = 100
# 学习率
learning_rate = 1e-4
# 交叉熵用来计算生成器Generator和鉴别器Disctiminator的损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 指定使用哪个数据集
dataset = 'fashion_mnist'
if dataset == 'mnist':(X_train, y_train), (X_test, y_test) = mnist.load_data()
if dataset == 'fashion_mnist':(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
else:raise RuntimeError('Dataset not found')
# 数据标准化
X_train, X_test = utils.normalize(X_train, X_test)
# 初始化G和D
discriminator = build_discriminator_model()
generator = build_generator_model()
# 数据标准化
def normalize(train, test):# convert from integers to floatstrain_norm = train.astype('float32')test_norm = test.astype('float32')# normalize to range 0-1train_norm = train_norm / 255.0test_norm = test_norm / 255.0# return normalized imagesreturn train_norm, test_norm# 生成器和鉴别器的优化器
generator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)# 鉴别器的损失函数
def discriminator_loss(real_output, fake_output):real_loss = cross_entropy(tf.ones_like(real_output), real_output)fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)total_loss = real_loss + fake_lossreturn total_loss
# 生成器的损失函数
def generator_loss(fake_output):return cross_entropy(tf.ones_like(fake_output), fake_output)
# 保存模型
def save_models(epochs, learning_rate):generator.save(f'generator-epochs-{epochs}-learning_rate-{learning_rate}.h5')discriminator.save(f'discriminator-epochs-{epochs}-learning_rate-{learning_rate}.h5')# 训练
tf.function
def train_step(batch_size=512):# 随机产生一组下标,从训练数据中随机抽取训练集idx = np.random.randint(0, X_train.shape[0], batch_size)# 随机抽取训练集Xtrain, labels = X_train[idx], y_train[idx]with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:# 随机初始化一个和图片大小的矩阵z = np.random.normal(0, 1, size=(batch_size, noise_dim))# 经过生成器,产生一个图片。并指定条件是label,把label嵌入到图片中generated_images = generator([z, labels], training=True)real_output = discriminator([Xtrain, labels], training=True)fake_output = discriminator([generated_images, labels], training=True)gen_loss = generator_loss(fake_output)disc_loss = discriminator_loss(real_output, fake_output)# 打印G和D的损失函数tf.print(f'Genrator loss: {gen_loss} Discriminator loss: {disc_loss}')gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)# 更新梯度generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
if __name__  =="__main__":epochs = 100for epoch in range(1, epochs + 1):print(f'Epoch {epoch}/{epochs}')train_step()if epoch % 500 == 0:save_models(epoch, learning_rate)

Model.py

模型采用深度卷卷积的GAN网络结构

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential, Model
import numpy as npWIDTH, HEIGHT = 28, 28
num_classes = 10
img_channel = 1
img_shape = (WIDTH, HEIGHT, img_channel)
noise_dim = 100def build_generator_model():model = tf.keras.Sequential()model.add(layers.Dense(7*7*256, use_bias=False,input_shape=(noise_dim,)))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Reshape((7, 7, 256)))model.add(layers.Conv2DTranspose(128, (1, 1), strides=(1, 1), padding='same', use_bias=False))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', use_bias=False))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))z = layers.Input(shape=(noise_dim,))label = layers.Input(shape=(1,))label_embedding = layers.Embedding(num_classes, noise_dim, input_length = 1)(label)label_embedding = layers.Flatten()(label_embedding)joined = layers.multiply([z, label_embedding])img = model(joined)return Model([z, label], img)def build_discriminator_model():model = tf.keras.Sequential()model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',input_shape=[28, 28, 2]))model.add(layers.LeakyReLU())model.add(layers.Dropout(0.3))model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))model.add(layers.LeakyReLU())model.add(layers.Dropout(0.3))model.add(layers.Flatten())model.add(layers.Dense(1))img = layers.Input(shape=(img_shape))label = layers.Input(shape=(1,))label_embedding = layers.Embedding(input_dim=num_classes, output_dim=np.prod(img_shape), input_length = 1)(label)label_embedding = layers.Flatten()(label_embedding)label_embedding = layers.Reshape(img_shape)(label_embedding)concat = layers.Concatenate(axis=-1)([img, label_embedding])prediction = model(concat)return Model([img, label], prediction)

这篇关于【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414551

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方