2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

本文主要是介绍2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。
在这里插入图片描述
以五一杯 A题为例子,以下是咱们做的一些想法呀!

问题1:

(1)建立数学模型:

无人机投放模型在这个问题中的作用是建立数学模型来描述无人机投放爆炸物的过程,并且可以通过该模型来优化无人机投放的策略,从而提高命中率和效率。具体来说,该模型可以通过考虑无人机的飞行高度、飞行速度、俯冲角度、发射速度等因素来确定最佳的发射距离和发射时机,以确保物体能够准确地命中目标。此外,该模型还可以考虑外部因素,如风速和风向等,来调整无人机的飞行轨迹和姿态,以提高投放精度和稳定性。

对于本题的模型,有:

其中 ρ 为空气密度,S 为物资横截面积, 为物资的阻力系数, g 为重力加速度,F 为无人机与物资之间的牵引力。

当无人机投放物资时,物资与无人机之间断开连接,牵引力 F取0,上式可以化简为:

其中为重力加速度。

(2)在无人机的飞行高度为 300m,飞行速度为 300km/h,风速为 5m/s,风向与水平面平行的情况下,使用代码解决:

import

 math# 定义常量
v0 = 300      # 飞行速度,单位km/h
vw = 5        # 风速,单位m/s
h = 300       # 飞行高度,单位m
r = 0.2       # 球形物资半径,单位m
m = 50        # 球形物资质量,单位kg
g = 9.8       # 重力加速度,单位m/s^2# 计算投放距离
d0 = v0**2/g * math.sin(0*2*math.pi/360) + vw*v0/g * math.cos(0*2*math.pi/360)
d180 = v0**2/g * math.sin(180*2*math.pi/360) + vw*v0/g * math.cos(180*2*math.pi/360)
d90 = v0**2/g * math.sin(90*2*math.pi/360) + vw*v0/g * math.cos(90*2*math.pi/360)# 输出结果
print(f"无人机飞行方向与风向相同时,投放距离为:{d0:.1f}m")
print(f"无人机飞行方向与风向相反时,投放距离为:{d180:.1f}m")

问题2:
假设无人机在水平飞行过程中到达距离目标点的水平距离为 x ,飞行高度为 ℎ ,飞行速度为v ,俯冲角度为 α ,发射速度为 u 。则无人机发射炸弹的轨迹可以分解为水平方向和竖直方向两个分量。

在水平方向上,无人机在 秒到达目标点,发射炸弹的时间为 秒。发射炸弹时无人机的水平速度为vcos⁡α ,炸弹的水平初速度为 ucos⁡α。

在竖直方向上,炸弹自由落体运动,竖直初速度为 usin⁡α ,竖直加速度为g 。设炸弹飞行的时间为 秒,则有:

将 t3 的值代入到水平方向上的运动中,则可以求得无人机与目标点之间的距离 x1 :

假设无人机发射炸弹的距离为 d ,则需要满足 1000≤d≤3000 。为了使无人机在发射炸弹时仍能保持安全的飞行高度,假设无人机的飞行高度为 800m ,则有 ℎ≥300m 。

为了使发射策略可行,需要选择合适的俯冲角度 α 和发射速度u。假设 α 为定值,可以根据上述模型求出发射速度u与发射距离d的关系,并绘制出其图像,如下图所示。

由图像可知,当俯冲角度为 30∘ 时,发射速度最小,约为 426.8m/s ,此时发射距离为d≈1716.2m

问题3:
无人机的飞行稳定性可以用无人机的俯仰角和偏航角的变化率来描述,即:

其中, θ表示俯仰角, 表示偏航角。这个数值越小,说明无人机的飞行越稳定。

无人机的命中精度可以用命中目标的距离来描述,与无人机的飞行稳定性呈反比关系,即:

在实际应用中,可以通过无人机的传感器数据来计算无人机的俯仰角和偏航角的变化率,并根据上述公式来评估无人机的飞行稳定性和命中精度。

import numpy as np
import matplotlib.pyplot as pltdef dynamic_equation(x, u):# 状态方程A = np.array([[1, 0, 0, dt, 0, 0],[0, 1, 0, 0, dt, 0],[0, 0, 1, 0, 0, dt],[0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0, 0],[0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0],[0, 0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt]])# 输入方程B = np.array([[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt]])# 状态更新x_new = np.dot(A, x) + np.dot(B, u)return x_new# 定义无人机飞行过程的仿真函数
def simulate_flight(x0, u, t):# 初始化状态和控制输入x = x0u = u.reshape(-1, 1)# 初始化状态列表和控制输入列表x_list = [x]u_list = [u]# 循环仿真for i in range(len(t)):# 计算下一个状态x = dynamic_equation(x, u)# 记录状态和控制输入x_list.append(x)、、模糊处理 完整版看文章下面~u_list.append(u)# 将列表转换为数组x_array = np.array(x_list)u_array = np.array(u_list)return x_array, u_array# 无人机和环境参数设置
h = 800  # 飞行高度,单位:m
v0 = 300  # 无人机飞行速度,单位:km/h
v = np.linspace(300, 400, 101) / 3.6  # 无人机相对地面速度,单位:m/s
vw = np.array([6, 0])  # 风速,单位:m/s
gamma = np.deg2rad(45)  # 俯冲角,单位:rad
g = 9.8  # 重力加速度,单位:m/s^2# 计算无人机稳定性
S = 2 * np.pi * (0.5 ** 2)  # 球形爆炸物的参考面积
Cd = 0.5  # 球形爆炸物的阻力系数
m = 50  # 球形爆炸物的质量,单位:kg
rho = 1.2  # 空气密度,单位:kg/m^3
K = 0.5 * rho * S * Cd / m  # 阻力系数
u = np.sqrt(v ** 2 + (v0 * np.sin(gamma)) ** 2)  # 爆炸物相对空气速度
D = K * u ** 2  # 阻力大小
H = h - np.sqrt((h ** 2) / (np.tan(gamma) ** 2 + 1))  # 爆炸物发射高度
t = (H - 300) / (v0 * np.cos(gamma))  # 爆炸物发射时间
x0 = v0 * t  # 无人机前进距离
x = x0 + (v + vw[0]) * t  # 爆炸物水平位移距离
y = H - (v0 * np.sin(gamma) + (g + vw[1]) * t) * t / 2  # 爆炸物垂直位移距离
delta_x = 20 / 2  # 爆炸物命中误差,单位:cm
sigma = delta_x / 3  # 标准差
P = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - delta_x) ** 2 / (2 * sigma ** 2))  # 命中概率密度函数
hit_rate = np.trapz(P, x)  # 命中率# 可视化结果
plt.plot(v, P)
plt.xlabel('Horizontal displacement (m)')
plt.ylabel('Probability density')
plt.title('Hit probability density')
plt.show()print('The hit rate is %.2f%%.' % (hit_rate * 100))

cs数模团队在亚太赛 APMCM前为大家提供了许多资料的内容呀!!
具体可以看看我的下方名片!里面包含有亚太赛一手资料与分析!
另外在赛中,我们也会陪大家一起解析亚太赛APMCM的一些方向
关注 CS数模 团队,数模不迷路~

这篇关于2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/413733

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu