python 提取图片中绿色植被,计算冠层覆盖度

2023-11-22 18:50

本文主要是介绍python 提取图片中绿色植被,计算冠层覆盖度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、任务描述

提取绿色植被部分对应的红外光谱(即红绿蓝三波段提取绿色,掩膜到红外波段)

"""
author: Shuai-jie Shen 沈帅杰
CSDN: https://blog.csdn.net/weixin_45452300
公众号: AgBioIT
"""
import cv2
import numpy as np
# 第一种办法--------------------------------------------------------------
im=cv2.imread('FLIR06.jpg')#提取图像的三个通道
B, G, R = cv2.split(im)#计算植被指数
cive = 0.441*R-0.811*G+0.385*B+18.78745
gray = cive.astype('uint8')#大津阈值分割,将土壤像素点变为0,植被像素点为1
ret, th = cv2.threshold(gray, 0, 1, cv2.THRESH_BINARY+cv2.THRESH_OTSU)#保存分离的结果图
b=B*th
g=G*th
r=R*th
img=cv2.merge([b,g,r])
cv2.imwrite('resultmask.jpg', img)
# --------------------------------------总体----------------------------------------------
import pandas as pd
#
heat = pd.read_excel('3旱棚.xlsx')
heat.columns=[i for i in range(640)]
mask = np.array(th)
heatnp = np.array(heat)
heat_result = mask*heatnp
heat_result_df = pd.DataFrame(heat_result)
heat_result_df.replace(0, np.nan, inplace=True)
# heat_result_df.to_excel('heat_result_df.xlsx')
# 覆盖部分
mask_d = pd.DataFrame(mask)
mask_d=mask_d-1
heat_result_re=mask_d*heat/255
heat_result_re.replace(0, np.nan, inplace=True)
heat_1_array = np.array(heat_result)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('heat_result_df_1绿色.xlsx')
#存去除部分
heat_1_array = np.array(heat_result_re)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('heat_result_df_1_re黑色.xlsx')

第二种方法

import cv2
import numpy as np# 第二种------------------------------------------------------------------
demo = cv2.imread('FLIR06.jpg')
# 使用2g-r-b分离土壤与背景
# 转换为浮点数进行计算
demo1 = np.array(demo, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(demo1)
gray = 2.4 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 计算直方图
# hist = cv2.calcHist([gray], [0], None, [256], [minVal, maxVal])
# plt.plot(hist)
# plt.show()
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, th) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
# dst=cv2.dilate(bin_img,kernel=np.ones((3,3),np.uint8))
# dst=cv2.erode(bin_img,kernel=np.ones((5,5),np.uint8))
# dst1=cv2.morphologyEx(bin_img,cv2.MORPH_CLOSE,np.ones((3,3),np.uint8))
# dst2=cv2.morphologyEx(bin_img,cv2.MORPH_OPEN,np.ones((3,3),np.uint8))
# 得到彩色的图像
(b8, g8, r8) = cv2.split(demo)
color_img = cv2.merge([b8 & th, g8 & th, r8 & th])
#cv2.namedWindow("demo", cv2.WINDOW_NORMAL)
# cv2.imshow("demo", color_img)cv2.imwrite("15111.png", color_img)
#cv2.waitKey()
#cv2.destroyAllWindows()# --------------------------------------总体----------------------------------------------
import pandas as pd
#
heat = pd.read_excel('3旱棚.xlsx')
heat.columns=[i for i in range(640)]
mask = np.array(th)
heatnp = np.array(heat)
heat_result = mask*heatnp/255
heat_result_df = pd.DataFrame(heat_result)
heat_result_df.replace(0, np.nan, inplace=True)
# heat_result_df.to_excel('heat_result_df.xlsx')
heat_1_array = np.array(heat_result_df)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('绿色.xlsx')# 覆盖部分
mask_d = pd.DataFrame(mask)
mask_d=mask_d-255
heat_result_re=mask_d*heat
heat_result_re.replace(0, np.nan, inplace=True)#存去除部分
heat_1_array_re = np.array(heat_result_re)
heat_1_array_re = heat_1_array_re.reshape(-1)
heat_1_array_pd_re = pd.DataFrame(heat_1_array_re)
heat_1_array_pd_re = heat_1_array_pd_re.dropna()
heat_1_array_pd_re.to_excel('黑色.xlsx')

红外部分仅输出绿色部分的热量数据,没有显示图
结果图如下在这里插入图片描述
在这里插入图片描述

二、计算冠层覆盖度

以第二种方法为例

import cv2
import numpy as np
# 第二种------------------------------------------------------------------
demo = cv2.imread('743dbf4d5db8d8177de00c60a92e8f5.jpg')
# 使用2g-r-b分离土壤与背景
# 转换为浮点数进行计算
demo1 = np.array(demo, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(demo1)
gray = 2.4 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, th) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
# 计算绿色植被和所有像素点的比值
print('冠层覆盖度为', round(sum(sum(th/255))/(len(th[0])*len(th))*100, 2), '%')
# 得到彩色的图像
(b8, g8, r8) = cv2.split(demo)
color_img = cv2.merge([b8 & th, g8 & th, r8 & th])
cv2.imshow("demo", color_img)

结果如下

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:19) [MSC v.1925 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> 
=============== RESTART: C:\Users\Administrator\Desktop\冠层覆盖度.py ===============
冠层覆盖度为 53.76 %

在这里插入图片描述

在这里插入图片描述
有些比较密的地方黑色的地方效果不好,说明植被的分离仍需要改进。

这篇关于python 提取图片中绿色植被,计算冠层覆盖度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412172

相关文章

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方