朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法

本文主要是介绍朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯 - 贝叶斯估计Python复现:

[舟晓南:朴素贝叶斯(Bayes)模型python复现 - 贝叶斯估计;下溢出问题]

在《统计学习方法》一书中,详细说明了后验概率最大化与期望风险最小化之间的关系,深入地说明了后验概率最大化的含义,但其中的推导过程有所省略,这篇文章作为补充说明。

后验概率最大化的含义:

书中提到,朴素贝叶斯法将实例分到后验概率最大的类中,这等价于期望风险最小化。

要明白什么是期望风险最小化,首先要明白什么是期望。

期望是指某件事大量发生后的平均结果,反应了随机变量平均取值的大小。计算期望的公式:

 
其中x为X的取值,p为在X为该取值的概率,K为x可取值的数量。

期望与平均值之间的关系:

ter)

 
其中N是实例总数,n是X为x取值时的实例数量。

举个例子,在10户人家中有3户拥有1个孩子,有3户拥有2个孩子,有4户拥有3个孩子,则其期望为:


即对家庭的期望是每个家庭有2.1个孩子。

说回期望风险,按照书中的定义,期望风险的含义是:模型关于联合分布的期望损失,学习的目标就是选择期望风险最小的模型。

既然期望风险就是期望损失,那么我们需要定义一个损失函数,用来判断模型的好坏。

假设我们在朴素贝叶斯分类器中使用0-1损失函数:

 
其中f(X)就是习得的朴素贝叶斯模型。

那么期望风险代表的就是损失的平均值,函数为:


因为期望的定义是值出现的概率乘以具体值之和,所以上式可转换为损失函数与联合概率之积的积分:


在上式的转换中运用了联合概率,边缘概率和条件概率的关系。
我们设 为H(x)。

H(x)中损失函数大于等于0,条件概率P(y|x)大于0,因此H(x)大于0。同时P(x)也大于0,且当X=x时P(x)(先验概率)为常数,因此期望风险最小化可转换为条件期望最小化,即argminH(x)

 
上式的第二个等式成立,是因为损失函数表示当分类错误时取1,那么我们只需要最小化分类错误的概率,也就是最小化 。

上式最后推导出在朴素贝叶斯分类器中,期望风险最小化等价于后验概率最大化。

  


同名公众号和知乎:舟晓南

对机器学习,深度学习,python感兴趣,欢迎关注专栏,学习笔记已原创70+篇,持续更新中~ ^_^

学习笔记:数据分析,机器学习,深度学习​https://www.zhihu.com/column/c_1274454587772915712

专栏文章举例:

【机器学习】关于逻辑斯蒂回归,看这一篇就够了!解答绝大部分关于逻辑斯蒂回归的常见问题,以及代码实现 - 知乎 (zhihu.com)

关于 python 二三事​https://www.zhihu.com/column/c_1484952401395941377

专栏文章举例:

记录一下工作中用到的少有人知的pandas骚操作,提升工作效率 - 知乎 (zhihu.com)

关于切片时不考虑最后一个元素以及为什么从0开始计数的问题 - 知乎 (zhihu.com)

关于转行:

舟晓南:如何转行和学习数据分析 | 工科生三个月成功转行数据分析心得浅谈

舟晓南:求职数据分析师岗位,简历应该如何写?|工科生三个月成功转行数据分析心得浅谈


我建了个数据分析,机器学习,深度学习的群~ 需要学习资料,想要加入社群均可私信~

在群里我会不定期分享各种数据分析相关资源,技能学习技巧和经验等等~

详情私信,一起进步吧!

这篇关于朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/411080

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关