python 探索分形世界|曼德布洛特|np.frompyfunc()

2023-11-22 15:20

本文主要是介绍python 探索分形世界|曼德布洛特|np.frompyfunc(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 分形的重要特征
  • 曼德布洛特集合
    • 曼德布洛特集合有一个以证明的结论:
    • 图像展示
      • np.ogrid[]
      • np.frompyfunc()
      • 集合转图像
  • julia集合

无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot

分形的重要特征

  • 自相似性
  • 无标度性
  • 非线性
    在这里插入图片描述

曼德布洛特集合

  • z 0 = 0 z_0 = 0 z0=0
  • z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c

想要确定复数c是否属于曼德布洛特集合,只要将c代入上面公式,当n足够大时,如果序列没有发散,则说明c输入曼德布洛特集合。

def iter_m(c):z = cfor i in range(1, 10):z = z**2 + cprint(round(z, 3), end = '->')print('\n' + '*' * 20)
iter_m(-1)
iter_m(-0.5)
iter_m(0.5)# 输出
0->-1->0->-1->0->-1->0->-1->0->
********************
-0.25->-0.438->-0.309->-0.405->-0.336->-0.387->-0.35->-0.377->-0.358->
********************
0.75->1.062->1.629->3.153->10.444->109.567->12005.476->144131442.662->2.0773872763941816e+16->
********************
可以看到-1和0.5不收敛

从图像理解-0.5为什么收敛:
z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c知道 z 1 = − 0.5 z_1 = -0.5 z1=0.5 z 1 z_1 z1要作下一步的横坐标,因此由 y = x y =x y=x找到横坐标为 z 1 z_1 z1的点,然后再在曼德布洛特的迭代函数中计算。(win11的计算器绘图不是方格,我稍微查了一下也没找到解决办法,如果有人知道怎么改,希望能留言,感谢)可以看到收敛于交点,至于-1和0.5也可以用同样的方法从图中看出来。

请添加图片描述

曼德布洛特集合有一个以证明的结论:

复平面上的曼德布洛特集合在一个半径为2的圆内

# 改进后的函数
def iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn True

图像展示

现提出想要对一个复数区域内的点进行区分是否属于曼德布洛特集合该如何做呢?
先学习两个方法

np.ogrid[]

x, y = np.ogrid[0:1:5j, -1:1:5j] # 前列后行
# 切片第三个参数如果以j结尾则是将其等分划分
# 如果没有j,只是一个数,则是以该数为间隔划分
print('x:\n', x)
print('y:\n', y)
z = x + y * 1j
print('z:\n', z)# 输出
x:[[0.  ][0.25][0.5 ][0.75][1.  ]]
y:[[-1.  -0.5  0.   0.5  1. ]]
z:[[0.  -1.j  0.  -0.5j 0.  +0.j  0.  +0.5j 0.  +1.j ][0.25-1.j  0.25-0.5j 0.25+0.j  0.25+0.5j 0.25+1.j ][0.5 -1.j  0.5 -0.5j 0.5 +0.j  0.5 +0.5j 0.5 +1.j ][0.75-1.j  0.75-0.5j 0.75+0.j  0.75+0.5j 0.75+1.j ][1.  -1.j  1.  -0.5j 1.  +0.j  1.  +0.5j 1.  +1.j ]]

np.frompyfunc()

优点类似于map的功能,但不完全相同。对于上面的iter_m3()方法只能传入一个复数,如果传入一个包含复数的数组则不可以。为了解决这个问题,使用np.frompyfunc(func, nin, nout)
其中func是自定义函数,nin是传入参数的个数,nout是传出参数的个数。

mande = np.frompyfunc(iter_m3, 1, 1)
mande(z)# 输出
array([[True, True, True, True, True],[False, True, True, True, False],[False, False, False, False, False],[False, False, False, False, False],[False, False, False, False, False]], dtype=object)

同样也可以使用map达到该功能,但是复杂一些

result = np.array(list(map(lambda row: list(map(iter_m3, row)), z)))
# 注意:对于二维数组,一层map取的是一维数组
print(result)# 输出
[[ True  True  True  True  True][False  True  True  True False][False False False False False][False False False False False][False False False False False]]

集合转图像

import numpy as np
import matplotlib.pylab as plt
from matplotlib import cmdef iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn Truedef draw_set(cx, cy, d, ufunc:np.ufunc):x0, x1, y0, y1 = cx - d, cx + d, cy - d, cy + dy, x = np.ogrid[y0:y1:400j, x0:x1:400j]z = x + y * 1jplt.imshow(ufunc(z).astype(float), cmap=cm.jet, extent=[x0, x1, y0, y1])mande = np.frompyfunc(iter_m3, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

输出图像:
在这里插入图片描述

但是颜色不够鲜艳,希望每一个不同的发散点都能显示不同的颜色。

def iter_m4(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
mande = np.frompyfunc(iter_m4, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

放大
对(0.273, 0.5921)处进行放大

x, y = 0.273, 0.5921
plt.subplot(2, 3, 1)
draw_set(-0.5, 0, 1.5, mande)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1.5), mande)

输出:
在这里插入图片描述

julia集合

迭代公式与曼德布洛特唯一区别在于 z 0 z_0 z0不是0,而是输入数据,c给定一个值,因此曼德布洛特集合只有一个,而julia集合有无数个。

def iter_j(z):c = -0.4 + 0.6jfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
julia = np.frompyfunc(iter_j, 1, 1)
draw_set(0, 0, 1.5, julia)

输出:
在这里插入图片描述
放大

x, y = 0.5754, 0.2048
plt.subplot(2, 3, 1)
draw_set(0, 0, 1.5, julia)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1), julia)

输出:
在这里插入图片描述

这篇关于python 探索分形世界|曼德布洛特|np.frompyfunc()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/411053

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar