python 探索分形世界|曼德布洛特|np.frompyfunc()

2023-11-22 15:20

本文主要是介绍python 探索分形世界|曼德布洛特|np.frompyfunc(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 分形的重要特征
  • 曼德布洛特集合
    • 曼德布洛特集合有一个以证明的结论:
    • 图像展示
      • np.ogrid[]
      • np.frompyfunc()
      • 集合转图像
  • julia集合

无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot

分形的重要特征

  • 自相似性
  • 无标度性
  • 非线性
    在这里插入图片描述

曼德布洛特集合

  • z 0 = 0 z_0 = 0 z0=0
  • z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c

想要确定复数c是否属于曼德布洛特集合,只要将c代入上面公式,当n足够大时,如果序列没有发散,则说明c输入曼德布洛特集合。

def iter_m(c):z = cfor i in range(1, 10):z = z**2 + cprint(round(z, 3), end = '->')print('\n' + '*' * 20)
iter_m(-1)
iter_m(-0.5)
iter_m(0.5)# 输出
0->-1->0->-1->0->-1->0->-1->0->
********************
-0.25->-0.438->-0.309->-0.405->-0.336->-0.387->-0.35->-0.377->-0.358->
********************
0.75->1.062->1.629->3.153->10.444->109.567->12005.476->144131442.662->2.0773872763941816e+16->
********************
可以看到-1和0.5不收敛

从图像理解-0.5为什么收敛:
z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c知道 z 1 = − 0.5 z_1 = -0.5 z1=0.5 z 1 z_1 z1要作下一步的横坐标,因此由 y = x y =x y=x找到横坐标为 z 1 z_1 z1的点,然后再在曼德布洛特的迭代函数中计算。(win11的计算器绘图不是方格,我稍微查了一下也没找到解决办法,如果有人知道怎么改,希望能留言,感谢)可以看到收敛于交点,至于-1和0.5也可以用同样的方法从图中看出来。

请添加图片描述

曼德布洛特集合有一个以证明的结论:

复平面上的曼德布洛特集合在一个半径为2的圆内

# 改进后的函数
def iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn True

图像展示

现提出想要对一个复数区域内的点进行区分是否属于曼德布洛特集合该如何做呢?
先学习两个方法

np.ogrid[]

x, y = np.ogrid[0:1:5j, -1:1:5j] # 前列后行
# 切片第三个参数如果以j结尾则是将其等分划分
# 如果没有j,只是一个数,则是以该数为间隔划分
print('x:\n', x)
print('y:\n', y)
z = x + y * 1j
print('z:\n', z)# 输出
x:[[0.  ][0.25][0.5 ][0.75][1.  ]]
y:[[-1.  -0.5  0.   0.5  1. ]]
z:[[0.  -1.j  0.  -0.5j 0.  +0.j  0.  +0.5j 0.  +1.j ][0.25-1.j  0.25-0.5j 0.25+0.j  0.25+0.5j 0.25+1.j ][0.5 -1.j  0.5 -0.5j 0.5 +0.j  0.5 +0.5j 0.5 +1.j ][0.75-1.j  0.75-0.5j 0.75+0.j  0.75+0.5j 0.75+1.j ][1.  -1.j  1.  -0.5j 1.  +0.j  1.  +0.5j 1.  +1.j ]]

np.frompyfunc()

优点类似于map的功能,但不完全相同。对于上面的iter_m3()方法只能传入一个复数,如果传入一个包含复数的数组则不可以。为了解决这个问题,使用np.frompyfunc(func, nin, nout)
其中func是自定义函数,nin是传入参数的个数,nout是传出参数的个数。

mande = np.frompyfunc(iter_m3, 1, 1)
mande(z)# 输出
array([[True, True, True, True, True],[False, True, True, True, False],[False, False, False, False, False],[False, False, False, False, False],[False, False, False, False, False]], dtype=object)

同样也可以使用map达到该功能,但是复杂一些

result = np.array(list(map(lambda row: list(map(iter_m3, row)), z)))
# 注意:对于二维数组,一层map取的是一维数组
print(result)# 输出
[[ True  True  True  True  True][False  True  True  True False][False False False False False][False False False False False][False False False False False]]

集合转图像

import numpy as np
import matplotlib.pylab as plt
from matplotlib import cmdef iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn Truedef draw_set(cx, cy, d, ufunc:np.ufunc):x0, x1, y0, y1 = cx - d, cx + d, cy - d, cy + dy, x = np.ogrid[y0:y1:400j, x0:x1:400j]z = x + y * 1jplt.imshow(ufunc(z).astype(float), cmap=cm.jet, extent=[x0, x1, y0, y1])mande = np.frompyfunc(iter_m3, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

输出图像:
在这里插入图片描述

但是颜色不够鲜艳,希望每一个不同的发散点都能显示不同的颜色。

def iter_m4(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
mande = np.frompyfunc(iter_m4, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

放大
对(0.273, 0.5921)处进行放大

x, y = 0.273, 0.5921
plt.subplot(2, 3, 1)
draw_set(-0.5, 0, 1.5, mande)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1.5), mande)

输出:
在这里插入图片描述

julia集合

迭代公式与曼德布洛特唯一区别在于 z 0 z_0 z0不是0,而是输入数据,c给定一个值,因此曼德布洛特集合只有一个,而julia集合有无数个。

def iter_j(z):c = -0.4 + 0.6jfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
julia = np.frompyfunc(iter_j, 1, 1)
draw_set(0, 0, 1.5, julia)

输出:
在这里插入图片描述
放大

x, y = 0.5754, 0.2048
plt.subplot(2, 3, 1)
draw_set(0, 0, 1.5, julia)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1), julia)

输出:
在这里插入图片描述

这篇关于python 探索分形世界|曼德布洛特|np.frompyfunc()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/411053

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很