本文主要是介绍【Tensorflow tf 掏粪记录】笔记六——DCGAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
DC_GAN与之前的生成MNIST数据集的项目一样,同样是利用了GAN神经网络的特性。让机器学会模仿并生成类似的图片。
只是这里不同的是,鉴别器的神经网路由全连接神经网络改成了卷积神经网络。同样的,生成器的神经网络也变成了反卷积神经网络,毕竟这次的SVHM数据集比MNIST数据集复杂。下图是DCGAN论文中关于反卷积的图片:
项目代码
https://github.com/IronMastiff/DC_GAN
反卷积
整个项目中最最关键的就是反卷积操作,通过反卷积来生成我们所期待的图片。反卷积操作中少了我们卷积操作中熟悉的各种pooling层。我用tf.layers.conv2d_transpose()
来实现的反卷积。在这里我反卷积的步长选择的是2,因为我是希望整个反卷积操作输出的是32 * 32 * 3 的图片。因为SVHM数据集的单个图片的大小就是32 * 32 * 3。当然了卷积padding要使用same,方便自己计算输出的维度大小。
生成器
生成器就是反卷积操作的运用。我用了3层反卷积操作,把输入的一维白噪音变成32 * 32 * 3 的图片。
使用tf.variable_scope()
为了以后方便只保存generator的权重。毕竟训练完成后,鉴别器是不需要的。仿照论文,白噪音通过全连接层后进入反卷积层。卷积过程中没有用任何的激活函数,只是在最后使用了tanh作为激活函数。
def generator( z, output_dim, reuse = False, alpha = 0.2, training = True ):with tf.variable_scope( 'generator', reuse = reuse ):# First fully connect layerx1 = tf.layers.dense( z, 4 * 4 * 512 )# Reshape it to start the convelutional stackx1 = tf.reshape( x1, ( -1, 4, 4, 512 ) )x1 = tf.layers.batch_normalization( x1, training = training )x1 = tf.maximum( x1, alpha * x1 )# 4 * 4 * 512x2 = tf.layers.conv2d_transpose( x1, 256, 5, strides = 2, padding = 'same' )x2 = tf.layers.batch_normalization( x2, training = training )x2 = tf.maximum( x2, alpha * x2 )# 8 * 8 * 256x3 = tf.layers.conv2d_transpose( x2, 128, 5, strides = 2, padding = 'same' )x3 = tf.layers.batch_normalization( x3, training = training )x3 = tf.maximum( x3, alpha * x3 )# 16 * 16 * 128logits = tf.layers.conv2d_transpose( x3, output_dim, 5, strides = 2, padding = 'same' )# 32 * 32 * output_dimout = tf.tanh( logits )return out
鉴别器
鉴别器还是老样子,输入的是真实的数据集中的图片与生成器生成的图片。鉴别器的任务就是鉴别出图片是生成器生成的还是真实的数据集的图片。
我采用3层卷积操作外加一个全连接层来识别图像的真伪。卷积层采用Leky_Relu作为激活函数,全连接层采用sigmoid作为激活函数。要是鉴别器识别的任务加上图片中的内容的话那就成了半监督学习了。
def discriminator( x, reuse = False, alpha = 0.2 ):with tf.variable_scope( 'discriminator', reuse = reuse ):x1 = tf.layers.conv2d( x, 64, 5, strides = 2, padding = 'same' )relu1= tf.maximum( x1, alpha * x1 )# 16 * 16 * 64x2 = tf.layers.conv2d( relu1, 128, 5, strides = 2, padding = 'same' )bn2 = tf.layers.batch_normalization( x2, training = True )relu2 = tf.maximum( bn2, alpha * bn2 )# 8 * 8 * 128x3 = tf.layers.conv2d( relu2, 256, 5, strides = 2, padding = 'same' )bn3 = tf.layers.batch_normalization( x3, training = True )relu3 = tf.maximum( bn3, bn3 * alpha )# 4 * 4 * 256# Flatten itflat = tf.reshape( relu3, ( -1, 4 * 4 * 256 ) )logits = tf.layers.dense( flat, 1 )out = tf.sigmoid( logits )return out, logits
这篇关于【Tensorflow tf 掏粪记录】笔记六——DCGAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!