本文主要是介绍支持向量机 Part 1:完全线性可分下的支持向量分类与python实现——机器学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
* * * The Machine Learning Noting Series * * *
导航
1. 概述:支持向量分类
2. 原理:完全线性可分下的支持向量分类
3. 求解:参数的拉格朗日乘数法求解
4. 预测:支持向量分类的预测
5. 应用:python实例与代码
1. 概述:支持向量分类
支持向量机(Support Vector Machine, SVM)是在统计学习理论上发展起来的一种机器学习方法,在解决小样本、非线性和高维的分类、回归预测问题上有很多优势。
支持向量机分为支持向量分类机和支持向量回归机,分别用于输入变量和二分类/数值型输出变量间的数量关系和分类预测,简称支持向量分类(Support Vector Classification, SVC);同理,支持向量回归(Support Vector Regression, SVR)用于输入变量和输出变量间的数量关系和回归预测。
支持向量分类主要有2情况:①完全线性可分样本指两类样本不重合,能被超平面百分百完全分开;而广义线性可分则找不到一个超平面完全将其分开;② 线性不可分样本找不到一个超平面将其线性分开,只能使用曲面,此类型的支持向量分类是支持向量机的灵魂,通过核函数解决。
2. 原理:完全线性可分下的支持向量分类
分类预测时,将训练集中的N个样本看成p维输入变量空间中的N个点(以点的不同形状或颜色代表输出变量的不同类别取值)。支持向量分类的目的是在p维空间中找到能将两类样本有效分开的超平面。
以二维空间为例,如上右侧两图,分类超平面为两种背景颜色的分界线,此时超平面方程为,其中,为两个维度。
拓展到p维空间,则超平面方程变为,即,分类超平面的位置由待估参数b和w确定。
预测时,将某个待预测点代入包含参数估计值的式子中,该预测点因式子大于或小于0而分别位于超平面两侧,因此输出变量分别为-1或1.
上左两图中的分界线为使用三层神经网络得到的分界面,对比来说,支持向量分类确定的超平面是具有最大边界的超平面,因此,它的优点在于:① 由较高预测置信度,因为超平面距两侧边缘点比一般的预测更远;② 最大边界超平面仅取决于两类的边缘观测点,从而有利于克服过拟合问题,具有很强的鲁棒性(Robustness)。
3. 求解:参数的拉格朗日乘数法求解
完全线性可分下的二维空间为例,步骤为:
1)找出可能的超平面。分别将两类最外侧样本观测点连线,形成两个多边形,称为两类样本集的凸包(Convex Hull),然后,以一类的凸包边界维基准线,找另一类凸包边界上的点,过该点做基准线的平行线,得到一对平行线,该平行线垂线的中垂线为对应的超平面。显然,可以找出很多个这样的超平面,下面找出平行线相距最远的对应的最大边界超平面。
2)若以类凸包边界为基准线,超平面方程为,则平行线为,那么平行线间的距离为;
3) 若要使预测正确,则有,因此有.要使平行线间距离最大,则要最小,为求解方便,即为最小,因此有超平面参数求解的凸二次型规划问题:
此规划问题使用拉格朗日乘数法求解。假设目标函数为或,f(X)的等高线图和g(X)≤0的图像如下图所示,
4. 预测:支持向量分类的预测
对新样本进行预测时,只需将样本X代入式子并且关注其符号:
其中Xi为支持向量,共有L个支持向量。若h(X)>0,则y^hat=1;若h(X)<0,则y^hat=-1.
5. 应用:python实例与代码
通过生成的模拟数据,展示完全线性可分下的最大边界超平面。
#导入模块
import numpy as np
from numpy import random
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei'] #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import os
# 生成模拟数据并可视化
N=100
X,Y=make_classification(n_samples=N,n_features=2,n_redundant=0,n_informative=2,class_sep=1,random_state=1,n_clusters_per_class=1)plt.figure(figsize=(9,6))
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=123)
markers=['^','o']
for k,m in zip([1,0],markers):plt.scatter(X_train[Y_train==k,0],X_train[Y_train==k,1],marker=m,s=50)
plt.title("训练集中样本观测点的分布")
plt.xlabel("X1")
plt.ylabel("X2")
plt.grid(True,linestyle='-.')
plt.show()
模拟数据的分布情况为:
接下来使用支持向量机求出最大边界超平面:
N=100
X,Y=make_classification(n_samples=N,n_features=2,n_redundant=0,n_informative=2,class_sep=1,random_state=1,n_clusters_per_class=1)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=123)
X1,X2= np.meshgrid(np.linspace(X_train[:,0].min(),X_train[:,0].max(),500),np.linspace(X_train[:,1].min(),X_train[:,1].max(),500))
X0=np.hstack((X1.reshape(len(X1)*len(X2),1),X2.reshape(len(X1)*len(X2),1)))
modelSVC=svm.SVC(kernel='linear',random_state=123,C=2) #modelSVC=svm.LinearSVC(C=2,dual=False)
modelSVC.fit(X_train,Y_train)
print("超平面的常数项b:",modelSVC.intercept_)
print("超平面系数W:",modelSVC.coef_)
print("支持向量的个数:",modelSVC.n_support_)
Y0=modelSVC.predict(X0)
plt.figure(figsize=(6,4))
plt.scatter(X0[np.where(Y0==1),0],X0[np.where(Y0==1),1],c='lightgray')
plt.scatter(X0[np.where(Y0==0),0],X0[np.where(Y0==0),1],c='mistyrose')
for k,m in [(1,'^'),(0,'o')]:plt.scatter(X_train[Y_train==k,0],X_train[Y_train==k,1],marker=m,s=40)plt.scatter(X_test[Y_test==k,0],X_test[Y_test==k,1],marker=m,s=40,c='',edgecolors='g')plt.scatter(modelSVC.support_vectors_[:,0],modelSVC.support_vectors_[:,1],marker='o',c='b',s=120,alpha=0.3)
plt.xlabel("X1")
plt.ylabel("X2")
plt.title("线性可分下的支持向量机最大边界超平面")
plt.grid(True,linestyle='-.')
plt.show()
结果为:
参考文献
《Python机器学习 数据建模与分析》,薛薇 等/著
这篇关于支持向量机 Part 1:完全线性可分下的支持向量分类与python实现——机器学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!