「torch.cosine_smilarity() = 0」引发的关于cpu与gpu精度问题的探讨

2023-11-22 05:12

本文主要是介绍「torch.cosine_smilarity() = 0」引发的关于cpu与gpu精度问题的探讨,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:2023年11月21日下午16:00 许,本篇博客记录由「torch.cosine_smilarity()计算余弦相似度计算结果为0」现象引发的关于 CPU 与 GPU 计算精度的探索。

事情的起因是,本人在使用 torch.cosine_smilarity() 函数计算GPU上两个特征的余弦相似度时,发现得出的结果为 0,百思不得其解。首先排出特征维度的问题,然后尝试5种不同的相似度计算方法:

  • scipy.spatial.distance.cosine
  • torch.cosine_similarity
  • F.cosine_similarity
  • torch.nn.CosineSimilarity
  • 基于余弦相似度公式的torch代码

整体代码如下:

import torch
torch.set_printoptions(profile="full")
import torch.nn.functional as F
from scipy.spatial.distance import cosine
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"import clip
from PIL import Image
clip_model, processor = clip.load("ViT-L/14", device=device)
srcpath = '/newdata/SD/DEFAKE/data_test/9709_glide.png'
despath = '/newdata/SD/outputs/0_9_sd1.5.png'
src_feature = clip_model.encode_image(processor(Image.open(srcpath)).unsqueeze(0).to(device)).squeeze(0)  
des_feature = clip_model.encode_image(processor(Image.open(despath)).unsqueeze(0).to(device)).squeeze(0)sim_1 = 1 - cosine(src_feature.cpu(), des_feature.cpu())sim_2 = torch.cosine_similarity(src_feature, des_feature, dim=0).item()sim_3 = F.cosine_similarity(src_feature, des_feature, dim=0).item()cos = torch.nn.CosineSimilarity(dim=0)
sim_4 = cos(src_feature, des_feature).item()sim_5 = torch.div(torch.sum(src_feature * des_feature,0),torch.sqrt(torch.sum(torch.pow(src_feature,2),0))* torch.sqrt(torch.sum(torch.pow(des_feature,2),0))).item()print(sim_1, sim_2, sim_3, sim_4, sim_5)
# 0.5302734375 0.0 0.0 0.0 0.53076171875

发现,上述代码在CPU和GPU上运行结果不一致:

上述代码在 CPU 上的运行结果为:

0.5301393270492554
0.5301393270492554
0.5301393270492554
0.5301393270492554
0.5301393270492554

上述代码在 GPU 上的运行结果为:

0.5302734375
0.0
0.0
0.0
0.53076171875

这是一个很有意思的现象,在CPU上计算出的5种相似度结果惊人一致,而在GPU上计算出的5种相似度结果中,中间三种基于torch函数调用的方式计算结果均为0,而第一种首先将特征搬运到CPU上然后使用scipy.spatial.distance.cosine()函数的计算结果和第五种直接在GPU上使用基于余弦相似度公式的torch代码的计算结果又与CPU上计算出的结果各有不同。


然后,我把由 CLIP 预训练模型提取的两张图像的特征(维度为768维) src_featuredes_feature 换成两个随机初始化的张量 ,其余代码不变:


# import clip
# from PIL import Image
# clip_model, processor = clip.load("ViT-L/14", device=device)
# srcpath = '/newdata/SD/DEFAKE/data_test/9709_glide.png'
# despath = '/newdata/SD/outputs/0_9_sd1.5.png'
# src_feature = clip_model.encode_image(processor(Image.open(srcpath)).unsqueeze(0).to(device)).squeeze(0)  
# des_feature = clip_model.encode_image(processor(Image.open(despath)).unsqueeze(0).to(device)).squeeze(0)# 将上面代码注释掉,换为:src_featre = torch.tensor([1.0, 2.0, 3.0])
des_feature = torch.tensor([4.0, 5.0, 6.0])

可见上述示例代码在CPU和GPU上运行结果是一致的:

上述代码在 CPU 上的运行结果为:

0.9746318459510803
0.9746317863464355
0.9746317863464355
0.9746317863464355
0.9746317863464355

上述代码在 GPU 上的运行结果为:

0.9746318459510803
0.9746317863464355
0.9746317863464355
0.9746317863464355
0.9746317863464355

由上述结果可以发现,第一种基于scipy.spatial.distance.cosine()函数的计算结果与其余四组基于torch的计算结果略有不同,说明后四种方法实现的底层逻辑应该是类似的,但由于给定特征的某些不可知原因,有时会出现中间三种基于torch函数调用的方法结果为0的情况,所以保险起见,如果要使用基于torch的计算方法,首选第5种相似度计算方法,当然,时间允许的情况下,直接在CPU上使用第一种方法无疑是精度最高的计算方法。


接下来放一个时间对比图(如下),可见在GPU上使用最后一种计算方法效率最高,在CPU上使用第一种方法效率最低。

time for spicy(gpu):  0.004714250564575195, [0.5361, 0.5303, 0.5220, 0.5059, 0.5430, 0.5469, 0.5078, 0.5293, 0.5283, 0.5337]
time for torch(gpu): 0.0005323886871337891, [0.5361, 0.5308, 0.5225, 0.5063, 0.5435, 0.5469, 0.5078, 0.5298, 0.5283, 0.5332]
time for spicy(cpu):  0.009323358535766602, [0.5358, 0.5301, 0.5222, 0.5060, 0.5426, 0.5467, 0.5077, 0.5298, 0.5279, 0.5333]
time for torch(cpu): 0.0025298595428466797, [0.5358, 0.5301, 0.5222, 0.5060, 0.5426, 0.5467, 0.5077, 0.5298, 0.5279, 0.5333]

PS:鉴于第一种方法无法进行余弦相似度的批量计算(1vN计算),追求速度的话,还是选择第五种方法吧~👀 附赠批量计算方法

src_feature = clip_model.encode_image(processor(Image.open(srcpath)).unsqueeze(0).to(device))  # [1,768]
des_features = torch.stack([clip_model.encode_image(processor(Image.open(path)).unsqueeze(0).to(device)) for path in despaths]).squeeze(1)  # [N,768]
sims = torch.div(torch.sum(src_feature * des_features,1),torch.sqrt(torch.sum(torch.pow(src_feature,2),1))* torch.sqrt(torch.sum(torch.pow(des_features,2),1)))  # 长度为N的张量
sims = sims.cpu().detach().numpy().tolist()  # 转化为列表,方便计算

参考资料

  1. GPU和CPU计算上的精度差异_cpu和gpu训练结果不同-CSDN博客

这篇关于「torch.cosine_smilarity() = 0」引发的关于cpu与gpu精度问题的探讨的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407758

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关