计算机视觉中的人脸识别过程包括,计算机视觉必读(二):人脸识别、图像检索、目标跟踪、视频分类......

本文主要是介绍计算机视觉中的人脸识别过程包括,计算机视觉必读(二):人脸识别、图像检索、目标跟踪、视频分类......,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8932414c835ad95cba93bea2e3d16cc2.png

人脸验证/识别(face verification/recognition)

人脸验证/识别可以认为是一种更加精细的细粒度图像识别任务。人脸验证是给定两张图像、判断其是否属于同一个人,而人脸识别是回答图像中的人是谁。一个人脸验证/识别系统通常包括三大步:检测图像中的人脸,特征点定位、及对人脸进行验证/识别。人脸验证/识别的难题在于需要进行小样本学习。通常情况下,数据集中每人只有对应的一张图像,这称为一次学习(one-shot learning)。

两种基本思路 当作分类问题(需要面对非常多的类别数),或者当作度量学习问题。如果两张图像属于同一个人,我们希望它们的深度特征比较接近,否则,我们希望它们不接近。之后,根据深度特征之间的距离进行验证(对特征距离设定阈值以判断是否属于同一个人),或识别(k近邻分类)。02fe310a5b895b83c4abeadd91ef0ff3.png

DeepFace 第一个将深度神经网络成功用于人脸验证/识别的模型。DeepFace使用了非共享参数的局部连接。这是由于人脸不同区域存在不同的特征(例如眼睛和嘴巴具有不同的特征),经典卷积层的“共享参数”性质在人脸识别中不再适用。因此,人脸识别网络中会采用不共享参数的局部连接。其使用孪生网络(siamese network)进行人脸验证。当两张图像的深度特征小于给定阈值时,认为其来自同一个人。5d7b31c8fd7f71d2df352c1c11b9c4e3.png

FaceNet 三元输入,希望和负样本之间的距离以一定间隔(如0.2)大于和正样本之间的距离。此外,输入三元的选择不是随机的,否则由于和负样本之间的差异很大,网络学不到什么东西。选择最困难的三元组(即最远的正样本和最近的负样本)会使网络陷入局部最优。FaceNet采用半困难策略,选择比正样本远的负样本。9f475c66a72233d0213cd4821b833b5a.png

大间隔交叉熵损失 近几年的一大研究热点。由于类内波动大而类间相似度高,有研究工作旨在提升经典的交叉熵损失对深度特征的判断能力。例如,L-Softmax加强优化目标,使对应类别的参数向量和深度特征夹角增大。 A-Softmax进一步约束L-Softmax

这篇关于计算机视觉中的人脸识别过程包括,计算机视觉必读(二):人脸识别、图像检索、目标跟踪、视频分类......的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407362

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

Solr 使用Facet分组过程中与分词的矛盾解决办法

对于一般查询而言  ,  分词和存储都是必要的  .  比如  CPU  类型  ”Intel  酷睿  2  双核  P7570”,  拆分成  ”Intel”,”  酷睿  ”,”P7570”  这样一些关键字并分别索引  ,  可能提供更好的搜索体验  .  但是如果将  CPU  作为 Facet  字段  ,  最好不进行分词  .  这样就造成了矛盾  ,  解决方法

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的: