NTT 的各类优化

2023-11-22 02:28
文章标签 优化 各类 ntt

本文主要是介绍NTT 的各类优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献:

  1. [Har14] Harvey D. Faster arithmetic for number-theoretic transforms[J]. Journal of Symbolic Computation, 2014, 60: 113-119.
  2. [Sei18] Seiler G. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography[J]. Cryptology ePrint Archive, 2018.
  3. [ZXZ+19] Zhou S, Xue H, Zhang D, et al. Preprocess-then-NTT technique and its applications to K yber and N ew H ope[C]//Information Security and Cryptology: 14th International Conference, Inscrypt 2018, Fuzhou, China, December 14-17, 2018, Revised Selected Papers 14. Springer International Publishing, 2019: 117-137.
  4. [ZLP21] Zhu Y, Liu Z, Pan Y. When NTT meets Karatsuba: preprocess-then-NTT technique revisited[C]//International Conference on Information and Communications Security. Cham: Springer International Publishing, 2021: 249-264.
  5. [CHK+21] Chung C M M, Hwang V, Kannwischer M J, et al. NTT multiplication for NTT-unfriendly rings: New speed records for Saber and NTRU on Cortex-M4 and AVX2[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021: 159-188.
  6. [BHK+21] Becker H, Hwang V, Kannwischer M J, et al. Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and apple m1[J]. Cryptology ePrint Archive, 2021.
  7. [HLS+22] Hwang V, Liu J, Seiler G, et al. Verified NTT multiplications for NISTPQC KEM lattice finalists: Kyber, SABER, and NTRU[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022: 718-750.
  8. [DL22] Duong-Ngoc P, Lee H. Configurable mixed-radix number theoretic transform architecture for lattice-based cryptography[J]. IEEE Access, 2022, 10: 12732-12741.
  9. [ZLH+23] Zhao Y, Liu X, Hu Y, et al. Design of an Efficient NTT/INTT Architecture with Low-Complex Memory Mapping Scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.

文章目录

  • 软件优化
    • Harvey Butterfly
    • Preprocess-then-NTT
    • Improved PtNTT
    • NTT-unfriendly rings
  • 硬件优化
    • Sei18
    • Neon NTT
    • Mixed-radix NTT
    • Others

软件优化

Harvey Butterfly

在 Shoup’s NTL 中,radix-2 NTT 的蝴蝶实现如下:

在这里插入图片描述

它采用了 Barrett 算法的变体,Shoup’s modular multiplication:修改 W ′ ≈ β / p W' \approx \beta/p Wβ/p W ≈ W β / p W \approx W\beta/p WWβ/p,于是 Barrett 取模算法就额外计算了与常数 W W W 的数乘运算。但是这个蝴蝶的 if-else 语句过多,容易使得 CPU 分支预测失败并导致回滚。

[Har14] 提出使用 Z p \mathbb Z_p Zp冗余表示 [ 0 , 2 p ) [0,2p) [0,2p) [ 0 , 4 p ) [0,4p) [0,4p)),从而移除了一些 if-else 语句。正确性要求:Shoup 模乘算法 W T ( m o d β ) WT\pmod\beta WT(modβ),只要求了 0 ≤ T < β 0 \le T < \beta 0T<β,并不需要 T < p T<p T<p,因此只要维持 4 p < β 4p<\beta 4p<β 结果就是正确的。

GS 蝴蝶的实现:

在这里插入图片描述

CT 蝴蝶的实现:

在这里插入图片描述

另外,也可以使用 Montgomery 模乘(而非 Shoup’s Barrett 模乘)去实现蝴蝶,此时也可以继续采取冗余表示:

在这里插入图片描述

Preprocess-then-NTT

[ZXZ+19] 考虑了 Z q \mathbb Z_q Zq 不存在 ζ 2 n \zeta_{2n} ζ2n 的情况,并非采取 Incomplete NTT,而是先对多项式做一些预处理(其实就是 Nussbaumer 转换)

1-Round Preprocess-then-NTT(1PtNTT),给定 f ∈ Z q [ x ] / ( x n + 1 ) f \in \mathbb Z_q[x]/(x^n+1) fZq[x]/(xn+1),那么
ψ : Z q [ x ] / ( x n + 1 ) → ( Z q [ y ] / ( y n / 2 + 1 ) ) [ x ] / ( x 2 − y ) f e v e n ( x 2 ) + x ⋅ f o d d ( x 2 ) ↦ f e v e n ( y ) + f o d d ( y ) ⋅ x \begin{aligned} \psi: \mathbb Z_q[x]/(x^n+1) &\to (\mathbb Z_q[y]/(y^{n/2}+1))[x]/(x^2-y)\\ f_{even}(x^2)+x\cdot f_{odd}(x^2) &\mapsto f_{even}(y)+f_{odd}(y)\cdot x \end{aligned} ψ:Zq[x]/(xn+1)feven(x2)+xfodd(x2)(Zq[y]/(yn/2+1))[x]/(x2y)feven(y)+fodd(y)x
此时,只需要 n ∣ q − 1 n\mid q-1 nq1(而非 2 n ∣ q − 1 2n\mid q-1 2nq1),那么两个系数 f e v e n , f o d d f_{even}, f_{odd} feven,fodd 就可以完全 NTT,即
1 P t N T T ( f ) : = ( N T T ( f e v e n ) , N T T ( f o d d ) ) 1PtNTT(f) := (NTT(f_{even}),\,\, NTT(f_{odd})) 1PtNTT(f):=(NTT(feven),NTT(fodd))
对于多项式乘法,就简单地采取 School 乘法即可。但是为了模 ( x 2 − y ) (x^2-y) (x2y) 方便,[ZXZ+19] 另外计算了 f o d d ′ ( y ) : = y ⋅ f o d d ( y ) f_{odd}'(y):=y \cdot f_{odd}(y) fodd(y):=yfodd(y) 以及它的 NTT 域,那么
h e v e n = f e v e n ⋅ g e v e n + f o d d ⋅ g o d d ′ h o d d = f e v e n ⋅ g o d d + f o d d ⋅ g e v e n \begin{aligned} h_{even} &= f_{even} \cdot g_{even} + f_{odd} \cdot g_{odd}'\\ h_{odd} &= f_{even} \cdot g_{odd} + f_{odd} \cdot g_{even} \end{aligned} hevenhodd=fevengeven+foddgodd=fevengodd+foddgeven
这一共需要计算 f e v e n , f o d d , g e v e n , g o d d , g o d d ′ f_{even},f_{odd},g_{even},g_{odd},g_{odd}' feven,fodd,geven,godd,godd 五个长度为 n / 2 n/2 n/2 的 forward NTT,以及 h e v e n , h o d d h_{even},h_{odd} heven,hodd 两个长度为 n / 2 n/2 n/2 的 inverse NTT。计算复杂度为 7 n / 2 log ⁡ n + 2 n 7n/2\log n+2n 7n/2logn+2n

其实 y ∈ Z p [ y ] / ( y n / 2 + 1 ) y \in \mathbb Z_p[y]/(y^{n/2}+1) yZp[y]/(yn/2+1) 的 NTT 域极其特殊,于是 g o d d ′ g_{odd}' godd 明明可以在 N T T ( g o d d ) NTT(g_{odd}) NTT(godd) 下直接计算出来,这个额外的 forward NTT 是不必要的。2-Round Preprocess-then-NTT(2PtNTT)的计算方法类似,就是采取了 x 4 = y x^4=y x4=y 的变换,此时只要求 n / 2 ∣ q − 1 n/2 \mid q-1 n/2q1 即可。计算复杂度为 15 n / 4 log ⁡ n + 4 n 15n/4\log n+4n 15n/4logn+4n

Improved PtNTT

[ZXZ+19] 实际上是采取了 “跨步” 转换。 [ZLP21] 采取 “聚合” 转换,它称之为 2-Part-Sepration,只需要 n ∣ q − 1 n \mid q-1 nq1(而非 2 n ∣ q − 1 2n\mid q-1 2nq1
KaTeX parse error: Expected 'EOF', got '&' at position 31: …Z_q[x]/(x^n+1) &̲\to& \mathbb Z_…
采取 Karatsuba 算法,
f ↦ ( f 0 , f 0 + f 1 ) g ↦ ( g 0 , g 0 + g 1 ) u : = f 1 g 1 h = f 0 g 0 ⋅ ( 1 − y ) + ( f 0 + f 1 ) ( g 0 + g 1 ) ⋅ x + u ⋅ ( y 2 − y ) = ( f 0 g 0 − u ) + ( ( f 0 + f 1 ) ( g 0 + g 1 ) − f 0 g 0 − u ) ⋅ y \begin{aligned} f &\mapsto (f_0, f_0+f_1)\\ g &\mapsto (g_0, g_0+g_1)\\ u &:= f_1g_1\\ h &= f_0g_0 \cdot (1-y) + (f_0+f_1)(g_0+g_1) \cdot x + u \cdot (y^2-y)\\ &= (f_0g_0-u) + ((f_0+f_1)(g_0+g_1)-f_0g_0-u) \cdot y \end{aligned} fguh(f0,f0+f1)(g0,g0+g1):=f1g1=f0g0(1y)+(f0+f1)(g0+g1)x+u(y2y)=(f0g0u)+((f0+f1)(g0+g1)f0g0u)y
上述算法需要计算 f 0 , f 1 , g 0 , g 1 f_0,f_1,g_0,g_1 f0,f1,g0,g1 四个长度为 n / 2 n/2 n/2 的 forward NTT(应当是模 x n / 2 − y x^{n/2}-y xn/2y 的多项式,没法直接 NTT 啊!),以及 f 0 g 0 , f 1 g 1 , ( f 0 + f 1 ) ( g 0 + g 1 ) f_0g_0,f_1g_1,(f_0+f_1)(g_0+g_1) f0g0,f1g1,(f0+f1)(g0+g1) ( ⋯ ) ⋅ y (\cdots)\cdot y ()y 四个 point-wise mult,其中的 N T T ( y ) NTT(y) NTT(y) 就只是常数而已。得到的 h h h 是长度 n / 2 n/2 n/2 的向量(嗯?明显不正常啊),只需一次 inverse NTT 就可以恢复出 h = f g h=fg h=fg

将它更加细分,
KaTeX parse error: Expected 'EOF', got '&' at position 31: …Z_q[x]/(x^n+1) &̲\to& \mathbb Z_…
此时的 f f f 被转换为 ∑ i f i ( x ) ⋅ y i \sum_i f_i(x) \cdot y^i ifi(x)yi,分成了 2 α 2^\alpha 2α 块。采取类似的乘法技巧,需要 2 α + 1 2^{\alpha+1} 2α+1 次长度为 n / 2 α n/2^\alpha n/2α 的 forward NTT,以及 2 2 α + 2 α + 1 − 4 2^{2\alpha}+2^{\alpha+1}-4 22α+2α+14 次的 point-wise mult,最终得到一个长度为 n / 2 α n/2^\alpha n/2α 的结果(这是什么鬼!),执行一次 inverse NTT。[ZLP21] 说上述算法的复杂度为 5 n log ⁡ n + O ( n ) 5n\log n+O(n) 5nlogn+O(n),而原始 NTT 乘法的复杂度为 3 n log ⁡ n + O ( n ) 3n\log n+O(n) 3nlogn+O(n),因此减速因子是 5 / 3 5/3 5/3

[ZLP21] 另外还对 [ZXZ+19] 进行了优化,也就是不再计算 N T T ( g o d d ′ ) NTT(g_{odd}') NTT(godd),而是使用 N T T ( y ) NTT(y) NTT(y) 计算乘积。多了一次 ponit-wise mult 的开销,但是减少了一次 forward NTT 运算。称其为:1-Round Improved-Preprocess-then-NTT(1IPtNTT),计算复杂度为 6 ⋅ n / 2 log ⁡ ( n / 2 ) + 4 ⋅ n / 2 = 3 n log ⁡ n − n 6\cdot n/2\log(n/2)+4\cdot n/2 = 3n\log n-n 6n/2log(n/2)+4n/2=3nlognn

另外,[ZLP21] 还将它扩展到更加细分, α \alpha α-IPtNTT(其实就是 Nussbaumer 转换),
Z q [ x ] / ( x n + 1 ) ≅ ( Z q [ y ] / ( y n / 2 α + 1 ) ) [ x ] / ( x 2 α − y ) \mathbb Z_q[x]/(x^n+1) \cong (\mathbb Z_q[y]/(y^{n/2^\alpha}+1))[x]/(x^{2^\alpha}-y) Zq[x]/(xn+1)(Zq[y]/(yn/2α+1))[x]/(x2αy)
然后只需 n / 2 α ∣ q − 1 n/2^\alpha \mid q-1 n/2αq1,即可执行长度为 n / 2 α n/2^\alpha n/2α 的完全 NTT,然后 [ZLP21] 采取 School 乘法,计算这个 ( m o d x 2 α − y ) \pmod{x^{2^\alpha}-y} (modx2αy) 的多项式乘法。计算复杂度为 3 n log ⁡ n + ( 3 ⋅ 2 α − 2 − 3 α + 1 / 2 ) ⋅ n 3n\log n + (3 \cdot 2^{\alpha-2}-3\alpha+1/2)\cdot n 3nlogn+(32α23α+1/2)n,如果采取 Karatsuba 算法后面的线性项可以更小一些。

对于 α = 2 , 3 \alpha=2,3 α=2,3,达到最优的复杂度 3 n log ⁡ n − 5 / 2 n 3n\log n-5/2n 3nlogn5/2n,当 n = 1024 n=1024 n=1024 量级,甚至比原始的 NTT 算法的 3 n log ⁡ n + O ( n ) 3n\log n + O(n) 3nlogn+O(n) 还要快不少(比率是 0.887 0.887 0.887)。换句话说,由于多项式的长度变短,蝴蝶层数减少,不完全的 NTT 乘法甚至可能会更快!

NTT-unfriendly rings

[CHK+21] 考虑了 PQC 中 NTT 不友好的 Saber、NTRU、LAC 方案的 NTT 加速实现。

  • Saber 的代数结构 Z q [ x ] / ( x n + 1 ) \mathbb Z_q[x]/(x^n+1) Zq[x]/(xn+1),其中 q = 2 13 q=2^{13} q=213 不是素数,维度 n = 256 n=256 n=256
  • NTRU 的代数结构有三个, Z 3 [ x ] / ( Φ n ( x ) ) \mathbb Z_3[x]/(\Phi_n(x)) Z3[x]/(Φn(x)) Z q [ x ] / ( Φ n ( x ) ) \mathbb Z_q[x]/(\Phi_n(x)) Zq[x]/(Φn(x)) Z q [ x ] / ( Φ 1 ( x ) ⋅ Φ n ( x ) ) \mathbb Z_q[x]/(\Phi_1(x)\cdot\Phi_n(x)) Zq[x]/(Φ1(x)Φn(x)),其中的 n n n 是素数, q = 2 k q=2^k q=2k 不是素数
  • LAC 的代数结构 Z q [ x ] / ( x n + 1 ) \mathbb Z_q[x]/(x^n+1) Zq[x]/(xn+1),其中 q = 251 q=251 q=251 是一种 min-split modulus,它使得 x n + 1 x^n+1 xn+1 仅能分解为两个长度 n / 2 n/2 n/2 的不可约因子

[CHK+21] 考虑的优化技术:Standard CTTwisted GSNegacyclic ConvolutionsIncomplete NTTsGood’s TrickMixed-Radix NTTMultiple Moduli and Explicit CRT

  1. 对 Saber 的优化:切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x n + 1 ) \mathbb Z_{q'}[x]/(x^n+1) Zq[x]/(xn+1) 上执行不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。
  2. 对 NTRU 的优化:切换到很大的维度 N N N(使得可以执行 NTT),切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x N + 1 ) \mathbb Z_{q'}[x]/(x^N+1) Zq[x]/(xN+1) 上利用 Good 和 Mixed-radix 计算不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。
  3. 对 LAC 的优化:切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x n + 1 ) \mathbb Z_{q'}[x]/(x^n+1) Zq[x]/(xn+1) 上执行不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。

采取 AVX2 实现上述的 NTT 乘法,考虑:快速模约简、层融合、延迟模约简、配置寄存器不相互依赖、不同 NTT 技巧的复杂度。

硬件优化

Sei18

[Sei18] 考虑了 Kyber 的 NTT 算法的 AVX2 实现。

首先是 Montgomery 模乘算法的修改:[Mon85] 采用了 q ′ = − q − 1 ( m o d β ) q'=-q^{-1}\pmod\beta q=q1(modβ),计算无符号数的模乘,并保证输出结果是一个非负数。而 [Sei18] 采取了有符号数的变体,它最终的减法恰好消除了低位,没有进位,因此可以只计算高位。这就更加适合 AVX2,更密集的向量化

在这里插入图片描述

其次是专用的模约简,对于 Kyber 采用的素数 q = 7681 q=7681 q=7681,它的二进制表示是稀疏的

在这里插入图片描述

上述算法的输出范围是冗余的 − 2 15 + 4 q ≤ r < 2 15 − 3 q -2^{15}+4q \le r < 2^{15}-3q 215+4qr<2153q,但是足够被用于加法/减法,将输入输出维持在单个 word 内。对于两个 words 的模约简,可以采用 Montgomery 模约简,常数 1 1 1 预计算为 β ( m o d q ) \beta \pmod q β(modq) 即可。

对于一般的素数 q q q,我们也希望只在单个 word 内完成模约简。采取 Barrett 算法:

在这里插入图片描述

它的输出范围是 0 ≤ r ≤ q 0 \le r \le q 0rq(对于 a ≡ 0 ( m o d q ) a\equiv 0\pmod q a0(modq) 会冗余)。另外,假如 step 1 采取了预计算 − v -v v,并修改 step 4 成为 r = a + t r=a+t r=a+t,此时的输出范围是 − q ≤ r ≤ 0 -q \le r \le 0 qr0。通过交错使用这两种 modes,可以维持模加的结果在 [ − q , q ] [-q,q] [q,q] 范围内。

最后是 Lazy reduction:因为 Kyber 的模数满足 4 q < 2 15 = β / 2 4q<2^{15}=\beta/2 4q<215=β/2,因此加法结果可以累积起来,直到它溢出单个 word 之前,才执行一次 Barrett 模约简。在 NTT 中,我们采用了 Montgomery 模乘,它的结果范围是 − q < r ′ < q -q<r'<q q<r<q,因此每一层迭代,系数增长至多为 q q q,从而可以连续 3 3 3 层蝴蝶,累积但不溢出 β / 2 \beta/2 β/2,此时执行模约简依然可以得到正确结果。

Neon NTT

[BHK+21] 对比了 Montgomery 和 Barrett 的关系,提出了 Montgomery 模乘的类比:Barrett 模乘。不过,Shoup’s NTL 中其实已经采用了这种算法。

我们考虑四种 ”整数近似“ 函数:下取整 ⌊ z ⌋ \lfloor z \rfloor z,上取整 ⌈ z ⌉ \lceil z \rceil z,圆整 ⌊ z ⌉ \lfloor z \rceil z,以及 “ 2 Z 2\mathbb Z 2Z-取值” ⌊ z ⌉ 2 : = 2 ⋅ ⌊ z / 2 ⌉ \lfloor z \rceil_2:= 2 \cdot \lfloor z/2 \rceil z2:=2z/2,这些函数可简记为 [ ⁣ [ z ] ⁣ ] [\![z]\!] [[z]],并且并不要求 [ ⁣ [ z ] ⁣ ] = z , ∀ z ∈ Z [\![z]\!]=z,\forall z\in \mathbb Z [[z]]=z,zZ

对于取模函数,可以采用上述的任意近似函数来定义,
z ( m o d [ [ ⋅ ] ] N ) : = z − N ⋅ [ ⁣ [ z N ] ⁣ ] z \pmod{^{[[\cdot]]} N} := z - N \cdot [\![\dfrac{z}{N}]\!] z(mod[[]]N):=zN[[Nz]]

  • z ( m o d N ) z \pmod{N} z(modN),采用下取整的定义,范围 U N : = { 0 , 1 , ⋯ , N − 1 } U_N:=\{0,1,\cdots,N-1\} UN:={0,1,,N1},称为 canonical unsigned representative
  • z ( m o d ± N ) z \pmod{^\pm N} z(mod±N),采用圆整的定义,范围 S N : = { − ⌊ N / 2 ⌋ , ⋯ , ⌊ ( N − 1 ) / 2 ⌋ } S_N:=\{-\lfloor N/2\rfloor ,\cdots,\lfloor (N-1)/2\rfloor\} SN:={N/2,,⌊(N1)/2⌋},称为 canonical signed representative
  • z ( m o d ⌊ ⋅ ⌉ 2 N ) z \pmod{^{\lfloor\cdot\rceil_2} N} z(mod2N),采取 2 Z 2\mathbb Z 2Z-取值的定义,范围 { − N , ⋯ , N } \{-N,\cdots,N\} {N,,N},并且具有相同的奇偶性

我们首先给出 Barrett 和 Montgomery 的最基本描述:

在这里插入图片描述

根据这些整数近似函数的性质,可以计算出 Barrett 输出范围是 < 3 N / 2 <3N/2 <3N/2,假如继续约束 N < R / 3 N<R/3 N<R/3,那么输出结果 < R / 2 <R/2 <R/2,从而在 ( m o d R ) \pmod{R} (modR) 下的表示是唯一确定的。此时,就可以把 Barrett 的一些双精度运算简化为单精度运算,

在这里插入图片描述

对于 Montgomery,正如 [Sei18] 所说, m o n t + mont^+ mont+ 可以优化为单精度运算。但是 m o n t − mont^- mont 出于进位的限制,无法这么优化。

在这里插入图片描述

两种 Montgomery 之间的关系:

在这里插入图片描述

Barrett 和 Montgomery 之间的关系:

在这里插入图片描述

类比着 Montgomery 模乘:

在这里插入图片描述

[BHK+21] 提出了 Barrett 模乘:

在这里插入图片描述

可以采取单精度指令的优化,只需要三条指令,

在这里插入图片描述

[BHK+21] 还继续考虑了 Armv8-A Neon vector instructions 提供的各种特殊指令,以优化 Barrett 和 Montgomery 的模约简、模乘的计算效率。

Mixed-radix NTT

[DL22] 考虑了 radix- 2 k 1 2^{k_1} 2k1 以及 radix- 2 k 2 2^{k_2} 2k2 的混合,给出了 FPGA 的实现。

对于一般的 radix-2 NTT 算法,在硬件上难以实现高吞吐量。因此他们将大的 NTT 拆解为若干小的 NTT,从而实现硬件的加速。

在这里插入图片描述

他们继续讨论了如何在 FPGA 上更好地实现这个算法。

Others

[HLS+22] 分别在 Intel AVX2 平台、ARM Cortex M4 平台,实现了 NTRU、Kyber、Saber 三种 KEM 方案,一共 6 6 6 个实现。他们使用汇编语言编写 NTT 算法,然后使用 CryptoLine 工具包(形式化语言,不依赖编程模型),半自动化地分析验证这些实现的正确性以及一些属性。

[ZLH+23] 优化了 High-radix NTT 的访存模式,提出了一种低复杂度的 cross-bank-write-back memory mapping scheme,通过时间延迟累积蝴蝶的结果,最后串行写回内存。最后,他们设计了 radix-4 NTT 的 FPGA 加速器。

这篇关于NTT 的各类优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406811

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

菲律宾诈骗,请各位华人朋友警惕各类诈骗。

骗子招聘类型:程序开发、客服、财务、销售总管、打字员等 如果有人用高薪、好的工作环境来你出国工作。要小心注意!因为这些骗子是成群结伴的! 只要你进入一个菲律宾的群,不管什么类型的群都有这些骗子团伙。基本上是他们控制的! 天天在群里有工作的信息,工作信息都是非常诱惑人的。例如招“打字员”、“客服”、“程序员”……各种信息都有。只要你提交简历了,他会根据你的简历判断你这个人如何。所谓的心理战嘛!

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份