本文主要是介绍基于ev-MOGA求解多目标优化问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
⛄ 内容介绍
多目标优化问题是现实世界中许多复杂问题的一种常见形式。在这些问题中,我们需要优化多个目标函数,而不是单个目标。然而,由于目标函数之间的相互依赖关系和冲突,传统的单目标优化算法无法直接应用于多目标优化问题。因此,研究人员开发了许多针对多目标优化问题的算法和技术。
ev-MOGA(evolutionary Multi-Objective Optimization Algorithm)是一种基于进化算法的多目标优化算法。它通过模拟自然界中的进化过程,逐步搜索解空间中的非劣解集合,以帮助决策者在多个目标之间进行权衡和选择。ev-MOGA算法的核心思想是通过维护一个种群,通过遗传操作(如交叉和变异)产生新的解,并通过多目标评估函数对这些解进行评估和排序。
ev-MOGA算法的一个重要特点是它能够生成并维护一组非劣解,而不仅仅是一个最优解。这使得决策者能够在不同的目标之间进行权衡,并选择最适合他们需求的解。为了实现这一点,ev-MOGA算法使用了一种称为“非劣排序”的技术,将种群中的解按照其在目标空间中的优劣程度进行排序。通过保留非劣解的精英集合,并通过交叉和变异操作引入新的解,ev-MOGA算法能够逐步逼近真实的Pareto前沿(即所有非劣解的集合)。
ev-MOGA算法的另一个重要特点是它的多样性维持能力。为了避免算法陷入局部最优解,ev-MOGA算法使用了一种称为“拥挤度距离”的技术。拥挤度距离用于衡量解在目标空间中的分布情况,通过鼓励解在整个Pareto前沿上均匀分布,以增加搜索空间的探索性。这种多样性维持能力使得ev-MOGA算法能够在解空间中找到更多的潜在解,并为决策者提供更多的选择。
然而,尽管ev-MOGA算法在多目标优化问题上取得了很大的成功,但它也面临着一些挑战和限制。首先,ev-MOGA算法对问题的可行解空间的表示形式有一定的要求。如果问题的可行解空间具有复杂的拓扑结构或非连续性,ev-MOGA算法可能无法很好地搜索解空间。其次,ev-MOGA算法对目标函数的可导性要求较高。如果目标函数不可导或难以计算,ev-MOGA算法可能无法准确评估解的优劣。最后,ev-MOGA算法的计算复杂度较高,特别是在解空间较大或目标函数较复杂的情况下,算法的运行时间可能会很长。
总的来说,ev-MOGA是一种有效的多目标优化算法,可以帮助决策者在多个目标之间进行权衡和选择。然而,在使用ev-MOGA算法求解多目标优化问题时,我们需要考虑问题的可行解空间表示形式、目标函数的可导性以及算法的计算复杂度等因素。通过充分理解和应用ev-MOGA算法的原理和技术,我们可以更好地解决多目标优化问题,并为决策者提供更好的解决方案。
⛄ 核心代码
%% evMOGA example 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Minimal algorithm parameters set (problem characteristics)
clear eMOGA
eMOGA.objfun='mop3'; % m-function name for objectives computation
eMOGA.objfun_dim=2; % Objective space dimension
eMOGA.searchspaceUB=[pi pi]; % Search space upper bound
eMOGA.searchspaceLB=[-pi -pi]; % Search space lower bound
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Algorithm execution
[pfront,pset,eMOGA]=evMOGA(eMOGA);
⛄ 运行结果
⛄ 参考文献
[1] M. Martínez, J.M. Herrero, J. Sanchis, X. Blasco and S. García-Nieto. Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. Vol. 22 pp. 455 - 465, 2009 (ISSN:0952-1976).
[2] J.M. Herrero, M. Martínez, J. Sanchis and X. Blasco. Well-Distributed Pareto Front by Using the epsilon-MOGA Evolutionary Algorithm. Lecture Notes in Computer Science, 4507, pp. 292-299, 2007. Springer-Verlag. (ISSN: 0302-9743)
ev-MOGA has been used in:
[3] J.M. Herrero, X. Blasco, M. Martínez, C. Ramos and J. Sanchis. Robust Identification of a Greenhouse Model using Multi-objective Evolutionary Algorithms. Biosystems Engineering. Vol. 98, Num. 3, pp. 335 - 346, Nov 2007. (ISSN 1537-5110)
[4] J.M. Herrero, X. Blasco , M. Martínez, J. Sanchis. Multiobjective Tuning of Robust PID Controllers Using Evolutionary Algorithms. Lecture Notes in Computer Science, 4974, pp. 515 - 524, 2008. Springer-Verlag. (ISSN: 0302-9743)
[5] J. M. Herrero, S. García-Nieto, X. Blasco, V. Romero-García, J. V. Sánchez-Pérez and L. M. Garcia-Raffi. Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization. Vol. 39, num. 2, pp. 203 - 215, 2009 (ISSN:1615-1488).
[6] G. Reynoso, X. Blasco, J. Sanchis. Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial. Vol. 6, Num. 4, pp. 93 - 103 , 2009. (ISSN: 1697-7912)
[7] E. Afzalan, M. Joorabian. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable.
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计
这篇关于基于ev-MOGA求解多目标优化问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!