基于ev-MOGA求解多目标优化问题附matlab代码

2023-11-22 01:40

本文主要是介绍基于ev-MOGA求解多目标优化问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

多目标优化问题是现实世界中许多复杂问题的一种常见形式。在这些问题中,我们需要优化多个目标函数,而不是单个目标。然而,由于目标函数之间的相互依赖关系和冲突,传统的单目标优化算法无法直接应用于多目标优化问题。因此,研究人员开发了许多针对多目标优化问题的算法和技术。

ev-MOGA(evolutionary Multi-Objective Optimization Algorithm)是一种基于进化算法的多目标优化算法。它通过模拟自然界中的进化过程,逐步搜索解空间中的非劣解集合,以帮助决策者在多个目标之间进行权衡和选择。ev-MOGA算法的核心思想是通过维护一个种群,通过遗传操作(如交叉和变异)产生新的解,并通过多目标评估函数对这些解进行评估和排序。

ev-MOGA算法的一个重要特点是它能够生成并维护一组非劣解,而不仅仅是一个最优解。这使得决策者能够在不同的目标之间进行权衡,并选择最适合他们需求的解。为了实现这一点,ev-MOGA算法使用了一种称为“非劣排序”的技术,将种群中的解按照其在目标空间中的优劣程度进行排序。通过保留非劣解的精英集合,并通过交叉和变异操作引入新的解,ev-MOGA算法能够逐步逼近真实的Pareto前沿(即所有非劣解的集合)。

ev-MOGA算法的另一个重要特点是它的多样性维持能力。为了避免算法陷入局部最优解,ev-MOGA算法使用了一种称为“拥挤度距离”的技术。拥挤度距离用于衡量解在目标空间中的分布情况,通过鼓励解在整个Pareto前沿上均匀分布,以增加搜索空间的探索性。这种多样性维持能力使得ev-MOGA算法能够在解空间中找到更多的潜在解,并为决策者提供更多的选择。

然而,尽管ev-MOGA算法在多目标优化问题上取得了很大的成功,但它也面临着一些挑战和限制。首先,ev-MOGA算法对问题的可行解空间的表示形式有一定的要求。如果问题的可行解空间具有复杂的拓扑结构或非连续性,ev-MOGA算法可能无法很好地搜索解空间。其次,ev-MOGA算法对目标函数的可导性要求较高。如果目标函数不可导或难以计算,ev-MOGA算法可能无法准确评估解的优劣。最后,ev-MOGA算法的计算复杂度较高,特别是在解空间较大或目标函数较复杂的情况下,算法的运行时间可能会很长。

总的来说,ev-MOGA是一种有效的多目标优化算法,可以帮助决策者在多个目标之间进行权衡和选择。然而,在使用ev-MOGA算法求解多目标优化问题时,我们需要考虑问题的可行解空间表示形式、目标函数的可导性以及算法的计算复杂度等因素。通过充分理解和应用ev-MOGA算法的原理和技术,我们可以更好地解决多目标优化问题,并为决策者提供更好的解决方案。

⛄ 核心代码

%% evMOGA example 1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Minimal algorithm parameters set (problem characteristics)clear eMOGAeMOGA.objfun='mop3';            % m-function name for objectives computationeMOGA.objfun_dim=2;             % Objective space dimensioneMOGA.searchspaceUB=[pi pi];    % Search space upper boundeMOGA.searchspaceLB=[-pi -pi];  % Search space lower bound%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Algorithm execution[pfront,pset,eMOGA]=evMOGA(eMOGA);

⛄ 运行结果

⛄ 参考文献

[1] M. Martínez, J.M. Herrero, J. Sanchis, X. Blasco and S. García-Nieto. Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. Vol. 22 pp. 455 - 465, 2009 (ISSN:0952-1976).

[2] J.M. Herrero, M. Martínez, J. Sanchis and X. Blasco. Well-Distributed Pareto Front by Using the epsilon-MOGA Evolutionary Algorithm. Lecture Notes in Computer Science, 4507, pp. 292-299, 2007. Springer-Verlag. (ISSN: 0302-9743)

ev-MOGA has been used in:

[3] J.M. Herrero, X. Blasco, M. Martínez, C. Ramos and J. Sanchis. Robust Identification of a Greenhouse Model using Multi-objective Evolutionary Algorithms. Biosystems Engineering. Vol. 98, Num. 3, pp. 335 - 346, Nov 2007. (ISSN 1537-5110)

[4] J.M. Herrero, X. Blasco , M. Martínez, J. Sanchis. Multiobjective Tuning of Robust PID Controllers Using Evolutionary Algorithms. Lecture Notes in Computer Science, 4974, pp. 515 - 524, 2008. Springer-Verlag. (ISSN: 0302-9743)

[5] J. M. Herrero, S. García-Nieto, X. Blasco, V. Romero-García, J. V. Sánchez-Pérez and L. M. Garcia-Raffi. Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization. Vol. 39, num. 2, pp. 203 - 215, 2009 (ISSN:1615-1488).

[6] G. Reynoso, X. Blasco, J. Sanchis. Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial. Vol. 6, Num. 4, pp. 93 - 103 , 2009. (ISSN: 1697-7912)

[7] E. Afzalan, M. Joorabian. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计

这篇关于基于ev-MOGA求解多目标优化问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406575

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X