电商归因模型技术方案

2023-11-22 01:30

本文主要是介绍电商归因模型技术方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

原文:【干货】电商归因模型技术方案

1. 电商归因目的

对于电商平台来说,当流量进入时,我们需要引导其完成购买任务,以实现流量价值最大化,在互联网红利消耗殆尽之时,流量会越来越贵,我们需要精细化运营每一份流量。

我们在做各种banner活动、Feed流推荐优化、活动页等进行效果评估,无法知道该位置最终产生了多少收益,也就很难针对该位置进行有效的改进。

如果进行单因数AB测试进行改版的效果评估,那也会存在如下2个问题:

  • 单因素变量控制并不容易做到完全可控,如果产品处在增长期,产品增长本身就是一个影响因子,很容易忽略此类因素的影响。
  • 评估方式低效,如果 2 天内只控制 1 个坑位变动,那么评估 20 个坑位内容改变就需要 40 天时间,这样的效率任何企业都无法接受。

因此,我们希望用数据分析中归因的方式解决坑位运营中评估的问题。

我们引入电商坑位归因的概念,把每一笔的成交都归给转化路径中不同的坑位。根据坑位的曝光转化价值来评判坑位的好与坏。把宝贵的流量尽可能都引导到转化率更高的坑位,以此达到精细化运营的效果。当然有了这个坑位价值评判的机制后各个坑位的改版也能准确的评估,真正做到了数据驱动增长。

2. 归因类型简介

  • 首次触点模型:多个「待归因事件」对同一个「目标转化事件」作出贡献时,认为第一个「待归因事件」功劳为 100%。
  • 末次触点归因:多个「待归因事件」对同一个「目标转化事件」作出贡献时,认为最后一个「待归因事件」功劳为 100%。
  • 线性归因:多个「待归因事件」对同一个「目标转化事件」作出贡献时,认为每个「待归因事件」平均分配此次功劳。
  • 位置归因:多个「待归因事件」对同一个「目标转化事件」作出贡献时,认为第一个和最后一个「待归因事件」各占 40% 功劳,其余「待归因事件」平分剩余的 20% 功劳。
  • 时间衰减归因:多个「待归因事件」对同一个「目标转化事件」作出贡献时,认为越靠近「目标转化事件」做出的贡献越大。

对于电商平台来说,末次触点归因是比较适合电商站内销售归因的。

虽然用末次触点归因实现方案上比简单,但是直接将价值100%归因给购买或者转化之前最后一次接触的渠道,而完全不考虑整个过程中消费者到底接触过多少个触点。转化之前发生了太多的事情,该模型完全忽视了漏斗上层和中层部分的行为对转化的影响。

因此我们公司融合首次触点归因和末次触点归因,计算用户进入一级流量入口后再到完成的完整购物链接行为。

一级流量流入的定义为:各个入口之间无法进行跳转,只能通过切换tab进行跳转或者返回初始位置后重新点击进入。这样我们就可以基于购物的完整链接的最外层进行销售归因,并且也能知道用户购物的完整路径,同时保证销售归因后各个入口坑位的销售额之和等于当日的销售额。

使用这种融合归因方式,也可能知道中间步骤的转化率。比如活动会场页和商品详情页的相关推荐,虽然对电商平台整体进行销售归因时,不会计算活动会场页各个模型的销售,也不会计算商品详情页的相关推荐。

但是由于我们记录了用户进入一级流量入口后的详细路径,因此我们单独研究活动会场页和商品详情页的效率时,也是可以计算得到各个模块的销售来进行对比分析。但是切记不能和一级流量入口的销售混合在一起看,这样会导致销售归因发生重复。

在这里插入图片描述

用户购物路径模拟图

3. 电商归因实现方案

对于电商归因我们进行了三个方面的归因,包括:曝光归因点击归因销售归因

即归因出所有的商品曝光来自哪里,所有的商品点击来自哪里,所有的销售来自哪里。这样就可以追踪各个流量入口的曝光链路归因指标。比如各个流量入口的商品曝光点击率、商品点击支付率、商品曝光价值等等核心监控指标来评价各个流量入口的效率。

电商归因准确的前提是埋点日志的完整性,因为我们是通过需要归因的事件往前找到用户的购买路径,这样的好出是大大减少计算量,也基本解决的归因的问题。因此用户行为日志的完整记录才能真实还原用户的购买路径,否则就可能导致归因出错,最终造成错误的评价数据。

首先需要在埋点体系中引入PageId的概念,PageId的作用是每当用户产生一次跳转行为进入一个新页面时,为这个页面赋予一个新的PageId;而当用户点击返回时,不会产生新的PageId。PageId是越靠近的当前时间的页面浏览的行为越大,且不会重复,类似于自增ID的实现逻辑。PageId的实现当然是写入埋点SDK当中,这样保证所有的埋点事件都带上PageId,并且也无需开发同步每次单独写逻辑。

然后根据埋点日志去还原用户的行为路径,全程都可以仅仅使用SQL逻辑就能计算完成。首先要确定所有要归因的end事件末端事件),包括商品曝光、商品点击、商品加购成功(加购后可以通过server的订单表判断用户是否完成了付款,也达到了销售的归因目的)。然后在确定所有归因head事件首端事件),即之前就定义的好的各个一级流量入口。我们平台比较特殊,是工具类App同时拥有电商业务,这样一级流量入口会比较多,但是可以枚举完成的,不仅仅包括常规电商App的流量入口,还可以在各个工具页面嵌入电商入口,这样复杂性要强于一般的电商App。

我们的埋点日志都会记录用户发生各个行为的本地时间,用end事件时间去找最接近的这个时间的head事件,直接用SQL的left jon关联日志表就能完成计算。这样在首尾2段时间内的所有埋点日志行为就是我们需要日志。

然后筛选出这些日志中的所有点击事件,过滤掉其他无效事件。再对所有剩下的日志进行排序,按照本地时间排序,这样就得到了一条完整的用户有效行为的路径记录。对于这部分数据我们就可以进行存储使用了,这部分数据为归因后用户完整链路记录数据。

再基于PageId过滤掉同个页面相同PageId的事件,保留本地时间最晚的那一条事件记录。这样就得到了用户进入一级流量入口后真正进行末端事件的有效路劲。这部分数据也需要存储记录,并且这个部分真正归因完成的用户行为路径,此时的得到各个一级流量入口就行归因得到此末端事件的来源。

通过这样计算后就了解各个一级流量入口的商品曝光点击情况,也能知道销售情况。利用这些数据就能衡量各个流量入口的效率情况,也同样也可以中间承载页面的效率如何。就能帮助产品运营更好的改善各个功能以及迭代各式各样的活动。

在这里插入图片描述

用户进行一次加购的路径还原

通过上述方法的计算,我们最终得到的用户加过链路步骤为:【1,2,9,10,11】,并且入口事件【1】就此次加购事件的归因来源。

另外再来举个商品详情页相关推荐的例子,下图所示的用户行为最终得到的链路步骤为:【1,2,9,10,11,12】,由于我们是完整保留用户的路径,因此我们能知道这次加购事件不仅来源于1,也有一部分功能功能来于11,也就是商品详情页的推荐,因此我们也能计算出商品详情页的推荐效率如何,后续算法团队迭代模型时也能根据这个数据来衡量优化的好与坏。

在这里插入图片描述

商品详情页之间的横跳类型用户路径

4. 总结

通过以上方案得到电商归因模型数据,可以大大提高运营同学的运营效率,不再是盲人过河似地凭感觉去优化各个坑位和活动,已经可以通过数据清晰公平地判断运营每一次迭代的结果。

但是仅仅根据坑位归因决定坑位价值,容易出现短期偏见,即追求短期利益,比如在一款内容产品中镶嵌一些游戏元素,可以让用户停留更久、数据表现更好。

但从长期来看,这种行为破坏了整个产品的价值定位,因为内容产品原本提供的是内容并不是游戏,产品也不并是为了追求用户停留时长而是为了实现价值。这是两者都存在的短期偏见。

因此不能仅仅根据坑位归因后的销售转化价值来评价坑位,还需要综合考虑产品价值定位、战略发展等因素,才能围绕长期目标进行健康发展。

这篇关于电商归因模型技术方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406513

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费