用MATLAB实现topsis评价法

2023-11-21 22:40
文章标签 matlab 实现 评价 topsis

本文主要是介绍用MATLAB实现topsis评价法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近将topsis评价方法用matlab实现了,就此分享一下具体操作方法,以供大家参考纠正。

1 将topsis的评价流程及函数方程列出

1.1 对各评价对象的参数矩阵进行同向化处理。

一般选择正向化处理,下面列举一些网络上其他博主的公式,以供参考使用。

1.1.1 极大型指标正向化

极大型指标所指意思为,这个指标越大越好,例如(升学率,毕业率等)

Xp=\frac{X-Xmin}{Xmax-Xmin}

X:各极大型属性指标的参数;

Xmax:X参数中的最大参数;

Xmin:X参数中的最小参数;

1.1.2 极小型指标正向化

同极大型指标,即此指标越小越好,例如(挂科率)

Xp=\frac{Xmax-X}{Xmax-Xmin}

公式中各变量意义同1.1.1

1.1.3 中间值型指标正向化

中间值型指标所指意思是,此指标取其中某一个值是最好的,例如(黄金比例)

Xp=1-\frac{\left | X-Xbest \right |}{\left | X-Xbest \right |max}

Xbest:此指标最优值;

1.1.4 区间型指标正向化

区间型指标所指意思为,此指标在某一个区间是最好的,例如(人的体温)

设最优区间[a,b],参数M为

M=max\left \{ a-min\left \{X \right \} ,max\left \{ X \right \}-b\right \}

Xp=\left\{\begin{matrix} 1-\frac{1-X}{M} &X<a \\ 1& a\leqslant X\leqslant b\\ 1-\frac{X-b}{M}& X>b \end{matrix}\right.

将所有指标的参数都进行了同向化处理后,得到一个m×n的同向化矩阵。

1.2 对同向化举证进行归一化处理

Z=\frac{Xp}{\sqrt{\sum_{i=1}^{n}Xp^{2}}}

Z:归一化处理后的m×n矩阵;

1.3 每个参数在Z中所对应的最大值和最小值

Zmax=[max(Z(:,1)),max(Z(:,2)),max(Z(:,3)),max(Z(:,4)),...,max(Z(:,n))];

Zmin=[min(Z(:,1)),min(Z(:,2)),min(Z(:,3)),min(Z(:,4)),...,min(Z(:,n))];

得到两个最大值和最小值向量Zmax和Zmin。

1.4 计算各评价指标的权重

根据专家经验列出一个各评价指标的重要程度矩阵,计算各指标权重ωj。

具体方法可根据AHP(层次分析法)中求权重的方法,这里不列出。

1.5 计算各指标与最优,最差方案的接近程度

Dplus\; i =\sqrt{\sum_{j=1}^{n}\omega j(Zmax\; j-Zij)^{2})}

Dminus\; i =\sqrt{\sum_{j=1}^{n}\omega j(Zmin\; j-Zij)^{2})}

Dplus:指标与最优方案的接近程度;

Dminus:指标与最差方案的接近程度;

ωj:各指标权重;

j:矩阵列数;

i:矩阵行数;

1.6 计算各评价对象与最优方案的接近程度

Si=\frac{Dminus}{Dplus+Dminus}

Si:接近程度向量;

Si越趋近于1,代表此方案越优秀。

2 topsis程序

%初始矩阵
A=[4.69,6.59,51,11.94;2.03,7.86,19,6.46;9.11,6.31,46,8.91;8.61,7.05,46,26.43;7.13,6.5,50,23.57;2.39,6.77,38,24.62;7.69,6.79,38,6.01;9.3,6.81,27,31.57;5.45,7.62,5,18.46;6.19,7.27,17,7.51;7.93,7.53,9,6.52;4.4,7.28,17,25.3;7.46,8.24,23,14.42;2.01,6.4,23,17.91;7.73,6.14,52,15.72;6.35,7.58,25,29.46;8.29,8.41,39,12.02;3.54,7.27,54,3.16;7.44,6.26,8,28.41];
%提取1至4列
B=A(:,1);
C=A(:,2);
D=A(:,3);
E=A(:,4);
%找出1,3,4列最大值和最小值
MAX1=max(B);MAX3=max(D);MAX4=max(E);
MIN1=min(B);MIN3=min(D);MIN4=min(E);
%第2列的最优值为7
BEST=7;
%第4列的最优区间[10,20]
a=10;b=20;
M=max(a-MIN4,MAX4-b);
%矩阵正向化,其中的BP、CP、DP、EP代表每一个指标的参数正向化后的向量
BP=(B-MIN1)/(MAX1-MIN1);
CP=1-((abs(C-BEST))/(max(abs(C-BEST))));
DP=(MAX3-D)/(MAX3-MIN3);
%计算EP
e1=((E<a).*E);
e2=(E>=a&E<=b);
e3=((E>b).*E);
for i=1:length(e1)if e1(i)~=0e1(i)=1-((a-e1(i))/M);end
end
for i=1:length(e3)if e3(i)~=0e3(i)=1-((e3(i)-b)/M);end
end
EP=e1+e2+e3;
%得到正向化矩阵AP
AP=[BP,CP,DP,EP];
%对AP矩阵进行归一化处理,得到矩阵Z
Z=AP./((sum(AP.^2)).^(1/2));
%Z中每一列的最大值和最小值(计算最优方案和最劣方案)
ZMAX=[max(Z(:,1)),max(Z(:,2)),max(Z(:,3)),max(Z(:,4))];
ZMIN=[min(Z(:,1)),min(Z(:,2)),min(Z(:,3)),min(Z(:,4))];
%计算权重,假设其4个因素的重要程度判断矩阵为VERDICT
VERDICT=[1,1,7,5;1,1,7,5;1/7,1/7,1,1/3;1/5,1/5,3,1];
n=4;
%几何平均计算各行向量的权重
Mn=prod(VERDICT,2); 
Mnn=Mn.^(1/n);
%进行归一化
%得到权重Wn
Wn=Mnn/sum(Mnn);
%计算判断矩阵的最大特征值
Aw=VERDICT*Wn;
H=Aw./Wn;
Lambdamax=(1/n)*sum(H);
CI=(Lambdamax-n)/(n-1);
RI=[0,0,0.52,0.89,1.12,1.26,1.36,1.41,1.46,1.49,1.52,1,54,1.56,1.58,1.59];
CR=CI/RI(n);
if    CR<0.1disp('CR<0.1,该矩阵的一致性可以接受')
elsedisp('CR>=0.1,该矩阵的一致性不可接受,需要修改')
end
%计算各评价对象与最优方案、最劣方案的接近程度
%先将Wn列向量转化为行向量,方便计算
Wn=reshape(Wn,1,4);
%将Wn、ZMAX、ZMIN向量复制,形成一个与Z矩阵同行列的矩阵,方便计算
repmat(Wn,19,1);
repmat(ZMAX,19,1);
repmat(ZMIN,19,1);
Dplus=(sum((Wn.*((ZMAX-Z).^2)),2)).^0.5;
Dminus=(sum((Wn.*((ZMIN-Z).^2)),2)).^0.5;
%计算各评价对象与最优方案的贴近程度
Si=Dminus./(Dplus+Dminus)
%Si越趋近于1越优秀

对于matlab的语言,我也只是会粗浅的运用,其中不对的地方望大家纠正。

关于topsis评价法的相关流程和公式,多为参考的网上其他博主的文章,matlab中的代码是自己敲的,此文章的目的为让自己再熟悉一下topsis评价法,也为初学matlab编程的朋友做一个参考。

3 期望

对于topsis方法中,计算各指标与最优,最差方案的接近程度的方法,我是避开了调用矩阵中的元素来作为变量,直接生成一个以矩阵和向量为变量的函数,然后用循环来得出最后的Dplus和Dminus,用的将向量复制成一个同类型矩阵,然后对应元素做运算,我总感觉这样有点low。

希望得到大神指导,如何使向量中的元素作为变量参与函数计算,并进行循环,最后得到一个结果向量。

4 参考文章

https://zhuanlan.zhihu.com/p/37738503

https://yucohny.blog.csdn.net/article/details/113242618?spm=1001.2014.3001.5506

这篇关于用MATLAB实现topsis评价法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405605

相关文章

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的