小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)

本文主要是介绍小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人生苦短,我用 Python

前文传送门:

小白学 Python 数据分析(1):数据分析基础

小白学 Python 数据分析(2):Pandas (一)概述

小白学 Python 数据分析(3):Pandas (二)数据结构 Series

小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame

小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据

小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择

小白学 Python 数据分析(7):Pandas (六)数据导入

小白学 Python 数据分析(8):Pandas (七)数据预处理

小白学 Python 数据分析(9):Pandas (八)数据预处理(2)

小白学 Python 数据分析(10):Pandas (九)数据运算

小白学 Python 数据分析(11):Pandas (十)数据分组

小白学 Python 数据分析(12):Pandas (十一)数据透视表(pivot_table)

小白学 Python 数据分析(13):Pandas (十二)数据表拼接

小白学 Python 数据分析(14):Pandas (十三)数据导出

小白学 Python 数据分析(15):数据可视化概述

小白学 Python 数据分析(16):Matplotlib(一)坐标系

小白学 Python 数据分析(17):Matplotlib(二)基础操作

小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)

小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)

小白学 Python 数据分析(20):pyecharts 概述

引言

各位同学好,今天是个阳光明媚的大周末。

本来今天是想将 pyecharts 的一些常用图片也介绍一下的,但是当我真正开始写的时候,想到了一个事情,这些基础的枯燥的内容还是不要再去折磨我的读者了。

取而代之的是不如写一点 pyecharts 好玩的东西,提升一些各位读者的兴趣,有兴趣了以后再去学习就显得不是那么困难了。

所以就有了这篇文章, pyecharts 好玩的图表。

二维图表可能大家都能经常见到,所以本文尽量不列举二维图表,尽量多的从 3D 图表玩起。

PS:顺便说一下, pyecharts 的文档质量非常好,所有的图表都有示例,对于刚接触的新手来讲十分友好,啥也不会的前提下,把 Demo CV 出来就能直接运行,学习代码,从 CV 开始。

以下示例均来自官方文档的示例,各位别喷我抄袭就成。

3D 柱状图

首先是 3D 柱状图, 2D 的柱状图各位同学应该经常能见到, 3D 的应该比较少见,我们先来看下效果:

示例的部分代码 Bar3d_punch_card.py

import pyecharts.options as opts
from pyecharts.charts import Bar3D# 省略部分数据代码data = [[d[1], d[0], d[2]] for d in data](Bar3D(init_opts=opts.InitOpts(width="1600px", height="800px")).add(series_name="",data=data,xaxis3d_opts=opts.Axis3DOpts(type_="category", data=hours),yaxis3d_opts=opts.Axis3DOpts(type_="category", data=days),zaxis3d_opts=opts.Axis3DOpts(type_="value"),).set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=20,range_color=["#313695","#4575b4","#74add1","#abd9e9","#e0f3f8","#ffffbf","#fee090","#fdae61","#f46d43","#d73027","#a50026",],)).render("bar3d_punch_card.html")
)

因为是 3D 图形,我们的数据是一个三维数据,上面的示例没有数据的代码,由于太长了,所以就没放。不过所有的代码都会上传至代码仓库,有需要的铜须可以去代码仓库获取。

日历图

如果经常上 GitHub ,那么对这张图表一定很熟悉:

这个就是日历图,上图是我本人的 GitHub 的提交记录,同样, pyecharts 也为我们提供了日历图的方法,示例如下:

import datetime
import randomfrom pyecharts import options as opts
from pyecharts.charts import Calendarbegin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 31)
data = [[str(begin + datetime.timedelta(days=i)), random.randint(1, 20)]for i in range((end - begin).days + 1)
]c = (Calendar().add("", data, calendar_opts=opts.CalendarOpts(range_="2019")).set_global_opts(title_opts=opts.TitleOpts(title="Calendar-2019 Github 提交情况"),visualmap_opts=opts.VisualMapOpts(max_=20,min_=1,orient="horizontal",is_piecewise=True,pos_top="230px",pos_left="100px",),).render("calendar_base.html")
)

结果如下:

仪表盘

仪表盘经常用来表示一件事情的完成情况,看着很高大上的样子,在 pyecharts 想做一个仪表盘实际上非常简单。

示例如下:

from pyecharts import options as opts
from pyecharts.charts import Gaugec = (Gauge().add("", [("完成率", 80)]).set_global_opts(title_opts=opts.TitleOpts(title="Gauge-基本示例")).render("gauge_base.html")
)

结果如下:

关系图

关系图,顾名思义就是描述关系的图,有时候我们看电视剧,出现的人物比较多记不住的时候,可以用 pyecharts 画个关系图捋顺关系(我真是个小机灵鬼)。

示例如下:

from pyecharts import options as opts
from pyecharts.charts import Graphnodes = [{"name": "肖恩", "symbolSize": 10},{"name": "海棠朵朵", "symbolSize": 20},{"name": "长公主", "symbolSize": 30},{"name": "陈萍萍", "symbolSize": 40},{"name": "范闲", "symbolSize": 50},{"name": "林婉儿", "symbolSize": 40},{"name": "庆帝", "symbolSize": 30},{"name": "范若若", "symbolSize": 20},{"name": "司理理", "symbolSize": 10}
]
links = []
for i in nodes:for j in nodes:links.append({"source": i.get("name"), "target": j.get("name")})
c = (Graph().add("", nodes, links, repulsion=8000).set_global_opts(title_opts=opts.TitleOpts(title="庆余年人物关系图")).render("graph_base.html")
)

结果如下:

我这里就简单的使用「庆余年」的人物关系随便画了一下,不要当真哦。

3D 折线图

这个示例就是经典中的经典了,旋转中的弹簧,完全摘自官方文档:

import mathfrom pyecharts import options as opts
from pyecharts.charts import Line3D
from pyecharts.faker import Fakerdata = []
for t in range(0, 25000):_t = t / 1000x = (1 + 0.25 * math.cos(75 * _t)) * math.cos(_t)y = (1 + 0.25 * math.cos(75 * _t)) * math.sin(_t)z = _t + 2.0 * math.sin(75 * _t)data.append([x, y, z])
c = (Line3D().add("",data,xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="value"),yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="value"),grid3d_opts=opts.Grid3DOpts(width=100, depth=100, rotate_speed=150, is_rotate=True),).set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=30, min_=0, range_color=Faker.visual_color),title_opts=opts.TitleOpts(title="Line3D-旋转的弹簧"),).render("line3d_autorotate.html")
)

结果如下:

这个示例中的难点在于使用三角函数,算出弹簧上的每一个点的空间位置,(x, y, z) 然后再将这组数据绘制在图表中,这个算法数学功底不好的人还真的看不懂(比如说小编我)。

水球图

水球图的命名就相当的形象了,我们先看下水球图长啥样:

我们使用 pyecharts 画水球图其实很简单的,如下:

from pyecharts import options as opts
from pyecharts.charts import Liquidc = (Liquid().add("lq", [0.6, 0.7]).set_global_opts(title_opts=opts.TitleOpts(title="Liquid-基本示例")).render("liquid_base.html")
)

示例中的两个参数 0.6 和 0.7 ,分别是后面的图层百分比和前面的图层百分比。

百度地图

pyecharts 还支持百度地图上的一些操作,这对于需要使用地图做图的同学来讲不得不说是一个福音,比如下面的全国主要城市空气质量图:

或者还有北京的公交线路图:

这两个示例代码都有点长,我就不贴出来了,有兴趣的同学可以访问我的代码仓库或者官方文档获取示例代码。

多 BB 两句

能看到这里的应该都是真爱了,就容我多 BB 两句,这篇文章不仅仅是这个系列的最后一篇,同样也是整个「小白学 Python」的最后一篇了,从去年的 11 月份开始写,直到今天,耗时差不多 5 个月,输出了「基础系列」、「爬虫系列」、「数据分析系列」共计 84 篇内容,这个过程中,确实收获满满,不知道有没有从一开始跟着看能看到现在的朋友,如果有可以在评论区举手。

还记得去年刚开始写的时候,有很多同学加我微信,应该和很多人都聊过我后面的规划,今天,我终于完成了这个规划,感觉很开心也很有成就感,感谢各位同学的一路陪伴和支持,后续还会继续分享 python 相关的内容,还希望各位能继续捧场。

后续的内容已经在规划中了,各位不会等太久(想搞点机器学习相关的入门内容,不知道搞不搞得定,不管搞不搞得定,先搞了再说)。

这次其实挺想给自己放个假的,但是不敢停下来,做一件事情,能坚持这么久,确实很不容易,如果一旦停下来,再想捡起来,这难度将会成倍数的上涨,我不敢保证自己还能捡的起来,所以,继续加油!奥利给!

代码仓库

老规矩,所有的示例代码都会上传至代码管理仓库 Github 和 Gitee 上,方便大家取用。

示例代码-Github

示例代码-Gitee

参考

http://gallery.pyecharts.org/#/README

您的扫码关注,是对小编坚持原创的最大鼓励:)

这篇关于小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405030

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核