本文主要是介绍AI芯片已然存在,与既往的嵌入式处理器不可混淆!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
昨天看到一篇文章《IEEE协会首次在京举办研讨会,王飞跃称不存在AI芯片》,光题目就已经抓住了小编的眼球!
小编迫不及待地打开文章找到了关键段落,原文是这样说的:
最后,在谈及“AI芯片”话题时,王飞跃教授直言,我不认为现在有所谓的人工智能芯片。德国马格德堡大学教授安德烈·纽伦堡(Andreas Nuernberger)补充道:“我同意没有人工智能芯片这一说法。现在芯片的发展加速了深度学习的过程,之前在图像方面也有这种深度学习,你现在把它们称作为人工智能的芯片,但这是出于某种特定的目的而生产的产品。我觉得现在物联网可以让过程变得更加可靠,可以确保这些网络和硬件的反应速度更快、更加可靠、更有活力。我觉得这些是智能硬件的现实世界,但是他们的代价很高,因为你需要更加复杂的基础设施,更多的技术,这和之前是不同的。”
说来也巧,在几天前编辑部的例会上,我们刚刚讨论过“AI芯片”,而且主编何立民教授认为“AI芯片”值得关注!针对此问题,何教授有自己的看法:
“AI芯片”的确存在,其概念不仅被广泛应用,也无法用其它的概念,如MCU、MPU等概念所替代。
王飞跃称不存在AI芯片,可能认为AI芯片只是原有嵌入式处理器的功能扩展而已。殊不知随着嵌入式处理器的功能不断外延,已从量变产生了质变。自从人工智能进入机器的深度学习时代,原有MCU的硬件加速已无法满足高速海量数值计算要求,以及大数据的云间交互要求。这样一来,在嵌入式领域便出现了MCU与AI芯片两个有本质差异的芯片群。前者是满足工具智能化的智能控制芯片(以控制见长);后者是满足智能机器深度学习的计算芯片(以计算见长)。未来,在人工智领域会逐渐形成智能化工具与智能机器两大领域。目前,智能化工具领域业已成熟,智能机器领域依托AI芯片、神经网络、深度学习、云际交互逐渐向强人工智能领域进发。目前,AI芯片形式多样,属初级发展阶段,尽管有些概念尚可商榷,但原有的各种嵌入式处理器的概念已无法沿袭,“AI芯片”可能会约定式俗。
以人脸识别为例,用于门禁的实时人脸识别,也许可以用MCU+图形加速器方案。但要从众多人群中实时识别特定的人脸,就要引入深度学习,不断提高其识别能力;为了与众多人脸对比,还要与云端大数据交互,无论多么高明的MCU都无法承担如此重任。也许“深度学习”、“云端交互”是AI芯片的两大重要特征。
目前AI芯片领域竞争激烈,也许一时难以形式统一的结构体系,但逐步完善后,作为嵌入式领域中的又一新兵,在人工智能领域与MCU相互补充、各尽其职。既不可相互替代,又有不同的技术发展方向。MCU与AI处理器用在不同领域,两者都有巨大的发展潜力。
一个新概念出来之后,一定会存在质疑阶段,这也是客观规律使然,面对以上两种截然不同的观点,各位嵌友又是如何看待此问题呢?欢迎留言~
没有看到《IEEE协会首次在京举办研讨会,王飞跃称不存在AI芯片》一文的朋友,直接戳题目即可阅读!
另附一篇3月份第一财经日报的报道:世人都晓AI好 AI芯片知多少?
AI芯片是当前科技产业和社会关注的热点,也是AI技术发展过程中不可逾越的关键一环,不管有什么好的AI算法,要想最终应用,就必然要通过芯片实现。
“AI芯片面临两个现实问题,第一我们没有一个覆盖所有算法的架构,需要在芯片当中实现一个具备深度学习的引擎,适应算法的引进,第二就是架构的可变性,要有高效的架构变换能力,目前的CPU加软件、CPU加FPGA,需要我们探索架构上的创新。” 清华大学微纳电子系主任、微电子所所长魏少军在智东西主办的GTIC 2018 全球 AI 芯片创新峰会上公开演讲时表示。
“多元的”AI芯片
AI是一个相当宽泛的概念,虽然不少面向消费者的电子产品生产商在宣传页上印上AI相关字眼,但他们中也有人意识到AI产品的发展要历经多个不同的阶段,因此颇为审慎。
352空气净化设备加入了激光检测模块来判断环境的PM2.5污染水平,同时通过自主研发的智能控制算法,使空气净化设备能够根据PM2.5污染水平高低自动运转,但在352环保科技合伙人张燚的表述中把这个称作“是为了提升智能化体验”而没有特别强调AI。
“真正的智能化形式绝不仅仅是物联网和远程控制以及语音输入,这些目前还只是一些手段和零散的表现形式。我认为智能化终极目标还是要在减少用户的干预,洞察用户心理,随时做出内部调整以及增强产品的学习能力,使产品能够有思考及改善能力,逐渐上升到重视人类的情感需求方面,也就是最终让人通过产品的自发服务满足最高的情感需求。”张燚告诉第一财经记者。
要谈AI芯片,就必须先对AI下一个定义。
在莱迪斯半导体亚太区资深事业发展经理陈英仁看来,“AI神经网络”不是简单定义为某类产品,而是一个新的设计方法,“传统的一些算法,是照规则、照逻辑的,神经网络是用数据训练出来的结果。”
这就好比出行到指定地点,如果要先定一些规则(逻辑),比如提前选择出行方式、规划中转地点,最后到达,就是传统的“规则型”设计;如果是有输入和已知的输出,比如起点和终点,在样本足够多之后(数据训练)就可以提供一个新的算法,这需要AI芯片。
在芯片研发的过程中,既有传统的老牌厂商,也有科技新贵,是否会出现像通用CPU那样独立存在的通用AI处理器呢?
事实上,各家技术路线大相径庭,在不同的技术路线上探索着通用与优化的平衡。
以虚拟货币数字芯片起家的比特大陆提出,要实现AI芯片9个月迭代一版的速度,这是对摩尔定律18~24个月升级一次的时间赛跑,也是用ASIC技术对暗硅发起的一次挑战。
“暗硅”,即是由于功耗的限制,导致处理器同一时刻只有很少的一部分的门电路能够工作,而大部分处于不工作的状态,这部分不工作的门电路,在某一个计算时刻是完全无效的。
ASIC是为了特定应用而设计的集成电路,除了不能扩展以外,在功耗、可靠性、体积方面都有优势,尤是其在高性能、低功耗的移动端。在这条路上比特大陆并不孤单,既有谷歌的TPU在前方高举大旗,也有一众创业公司在机器视觉等垂直领域跟随。
“与传统芯片迭代速度相比,AI算法迭代更快。我们针对最新算法的需求、神经网络算法的共性基础,把它快速地放到芯片上。” 比特大陆产品战略总监汤炜伟说。
比特大陆2017年11月份推出的首款AI芯片,现在已经全线量产,兼顾训练和推理的功能,但以推理为主。他认为,训练和推理应该是两个不同的平台,未来比特大陆还是会侧重于推理。 “高性能计算它涉及到很多领域,所以我们在2015年底决定进入到AI这个领域,尤其深度学习这个领域,我们在已有的一些高性能计算这些芯片、硬件,还有一些软件算法的基础上,我们还大量引进了很多AI方面专业的人才。”汤炜伟说。
但比特大陆还没有考虑做终端芯片,提供的芯片将用于服务器。
目前业内使用最多的是GPU,因为它适用于单指令、多数据处理,可用于深度学习的训练和推理。英伟达AI技术中心亚太首席技术官Simon See接受第一财经采访时表示,英伟达要做通用性的芯片,“通用是我们的优势,ASIC是针对其中一个领域,而GPU不仅仅可以应用于AI训练还有图像渲染等等。”
他表示,新的算法一直在出现,为了适配新的算法,就需要重新做芯片,英伟达会收集客户的意见并改进,但不会因为所谓“风口”的转向而调整,比如去做专门挖矿的芯片。 “做芯片是很冒险的,这么多公司在做是好事,说不定会有新的公司出很好的产品。我们的芯片性能体现,不仅仅是靠芯片自身的性能(raw performance),还有软件的性能。” Simon说。
此外,被大众关注较少,但有望把握住AI芯片发展机会的还有FPGA。FPGA适用于多指令,单数据流的分析,常用于预测阶段,因为没有内存和控制所带来的存储和读取部分在效率和功耗上具有一定优势,劣势是运算量并不是很大。
“AI是FPGA是一个非常好的切入点,也是一个重新洗牌的机会点。FPGA的并行运算算法、设计不好写,因为人的逻辑都是一个单向的,要多角度去考虑,其实不是那么容易,通常要特别的设计方法。”陈英仁告诉第一财经。
简言之,芯片成品可以按照是否可编程进行划分。CPU、GPU、FPGA都是可编程的,下达不同指令就可以做不同的运算,而ASIC是不可编程、定制化的芯片。两者的区别可以粗略比较为买成衣还是高级定制。成衣的客户相对广泛,而高级定制如果要想努力变成一个标准产品因不能修改就没那么容易。
可编程,意味着通用,而定制化意味着某些方面的优化以其他方面的牺牲为代价。通用和优化是对立的,芯片厂商都在寻找着最佳的平衡点。
应用落地是终极难题
由于还不存在适用所有通用算法的AI芯片,确定应用领域就成为发展的重要前提。遗憾的是,AI的杀手级应用目前尚未出现,现存的应用还未形成刚需,即便如此,AI芯片还是出现了百家争鸣的气象。
机器视觉领域成为AI芯片的“兵家必争之地”,涌入了商汤、旷视、地平线等一众创业者,眼擎科技创始人、CEO朱继志也是其中之一。
在解决实际问题层面,芯片并不是眼擎科技的唯一方案,而是根据行业的不同情况提供从IP授权、模组、芯片到行业定制系列解决方案。眼擎科技看到,以CPU为代表的通用芯片垄断时代已经过去,AI产业已经产生了新需求,偏重于前端在图像收集阶段直接解决因弱光、反光、逆光而造成的图像质量不高和算法识别率低的问题。
朱继志的AI芯片之路是从上游的芯片领域开始做创新成像技术架构,以满足AI新市场的新需要。“视频图像技术有两种,一种是给到图片在后端进行分析,比如商汤科技。图像是怎么来的,这是我们的事情,在前端处理。前端处理必须要在前端实时处理完成,不能有延时或出错,像流水一样,两者技术路线是不一样的。” 朱继志说。
同样,输出基于人工智能的商业应用解决方案的锋时互动专注于人机交互领域,提供手势识别、人脸识别、姿态识别等多种基于人工智能的解决方案。锋时互动CEO刘哲告诉记者,“人工智能必将细分到行业中,呈现多元化发展的趋势。在技术逐渐成熟后,也会势必推出专属的针对人机交互的场景推出芯片,以降低成本和功耗。同时带来性能的大幅提升。”
让人与机器在多种环境下都能自然沟通,构建更为高效、更具想象力的通用型AI生态也吸引着投资人的注意力。
“AI芯片现在是两拨人在做,以寒武纪为代表的,他们原本就做芯片,在计算机体系结构和芯片设计方面比较有经验,另外一拨是以地平线为代表的,以前做的是软件算法,现在做芯片。前者更容易做出一个好用、可靠的产品,后者更偏向于提供整体解决方案,硬件不足的地方用软件补足。”云启资本董事总经理陈昱判断,两者会有路径的差异化。
芯片的成本高在设计研发阶段,设计好之后要经过昂贵的流片验证才能量产,如果没有大的客户,就无法分摊前期成本。即便研发成功,量产时也面临着上游产能受限的问题。
“比特大陆在芯片设计上具有丰富经验,他们的挖矿芯片因为加密货币市场的爆发而需求强劲,但其产能仍受制于上游的芯片代工厂商。” 陈昱说。按照汤炜伟的说法,比特大陆有望今年成为台积电全球第五大客户。
正是因为芯片的研发周期和成本都很高,硬蛋公关总监王刚告诉第一财经,未来会考虑提供AI通用模块。“我们今年看到了AIOT的机会,就是人工智能与物联网的结合。硬蛋会把产业链上游的AI合作伙伴,如百度、云知声等,与硬蛋平台上的物联网项目对接,推出通用的AI模块。”
毫无疑问,国内的半导体行业正在蓬勃发展。已有消息传出国家成立的国家集成电路产业投资基金(下称“大基金”)第二期正在紧锣密鼓募资之中,筹资规模会超过一期,在1500亿~2000亿元左右。按照1∶3的撬动比,所撬动的社会资金规模在4500亿~6000亿元左右。
国家集成电路产业投资基金股份有限公司总裁丁文武去年10月份接受《中国电子报》采访时称,原计划首期募集资金1200亿元,通过各方的努力,实际募集资金达到了1387.2亿元。经过3年的运作,截至2017年9月20日,大基金累计决策投资55个项目,涉及40家集成电路企业,共承诺出资1003亿元,承诺投资额占首期募集资金的72%,实际出资653亿元,也达到首期募集资金的将近一半。
“真正把AI芯片做成有竞争力,要有护城河,这是远超于芯片本身的事情。像阿里和腾讯争取入口流量一样芯片往应用层走,更好知道最终用户的实际需求,更好的定义芯片,需要有比较强的能效,有一定的AI处理架构,没有这样的架构都是一片浮云。” 深鉴科技联合创始人、CEO姚颂对此有着清醒的认识。
而魏少军在一片繁荣之际毫不讳言“现在的发展太热了,甚至媒体在其中也起到了推波助澜的作用”。他提到,AI芯片的发展很可能在未来2到3年遭遇一个挫折期,今天以满足特定应用为主要目的的AI芯片需要思考何去何从,今天的部分甚至大部分创业者将成为此次技术变革中的先烈。
倘若如此,“毫无疑问,这将是AI发展中最令人钦佩也最令人动容的伟大实践。” 魏少军说。
小编还看到一文,贴来供参考:TensorFlow成员说:深度学习的未来,在单片机的身上
果然,TensorFlow Mobile的老大,满脑子还是便携设备的事。
Pete Warden,是谷歌TensorFlow团队成员,也是TensorFLow Mobile的负责人,常年遨游在深度学习的大海。
另外,这些看上去很熟悉的书,也是他的作品。除此之外,皮特有个新的想法要和大家分享——他坚定地相信,未来的深度学习能够在微型的、低功耗的芯片上自由地奔跑。换句话说,单片机 (MCU) ,有一天会成为深度学习最肥沃的土壤。这里面的逻辑走得有些绕,但好像还是有点道理的。
为什么是单片机
单片机遍地都是
根据皮特的估计,今年一年全球会有大约400亿枚单片机 (MCU) 售出。
MCU里面有个小CPU,RAM只有几kb的那种,但医疗设备、汽车设备、工业设备,还有消费级电子产品里,都用得到。这样的计算机,需要的电量很小,价格也很便宜,大概不到50美分。之所以得不到重视,是因为一般情况下,MCU都是用来取代 (如洗衣机里、遥控器里的) 那些老式的机电系统——控制机器用的逻辑没有发生什么变化。
能耗才是限制因素
任何需要主电源 (Mains Electricity) 的设备,都有很大的局限性。毕竟,不管到哪都要找地方插电,就算是手机和PC都得经常充电才行。
然而,对智能产品来说,在任何地方都能用、又不用经常维护,才是王道。所以,先来看下智能手机的各个部位用电有多快——
· 显示器400毫瓦
· 无线电800毫瓦
· 蓝牙100毫瓦
· 加速度计21毫瓦
· 陀螺仪130毫瓦
· GPS 176毫瓦
相比之下,MCU只需要1毫瓦,或者比这更少。可是,一枚纽扣电池拥有2,000焦耳的电量,所以即便是1毫瓦的设备,也只能维持1个月。当然,现在的设备大多用占空比 (Duty Cycling) ,来避免每个部件一直处在工作状态。不过,即便是这样,电量分配还是很紧张。
CPU和传感器不太耗电
CPU和传感器的功耗,基本可以降到微瓦级,比如高通的Glance视觉芯片。相比之下,显示器和无线电,就尤其耗电了。即便是WiFi和蓝牙也至少要几十毫瓦。
因为,数据传输需要的能量,似乎与传输距离成正比。CPU和传感器只传几毫米,而无线电的传送距离以米为单位,就要贵得多。
传感器的数据都去哪了
传感器能获取的数据,比人们能用到的数据,多得多。皮特曾经和从事微型卫星拍摄的攻城狮聊过。他们基本上用手机相机来拍高清视频。但问题是,卫星的数据存储量很小,传输带宽也很有限,从地球上每小时只能下载到一点点数据。就算不涉及到地外事务,地球上的很多传感器也会遇到这样的尴尬。
一个很有趣的栗子,来自皮特的一个好基友,每到12月,他家上网流量就会用到爆炸。后来,他发现是那些给圣诞节挂的彩灯,影响了视频下载的压缩比例,多下载了很多帧。
跟深度学习有什么关系
如果上面这些听上去有点道理,那么就有一大片市场等待技术来挖掘。我们需要的是,能够在单片机上运转的,不需要很多电量的,依赖计算不依赖无线电,并且可以把那些本来要浪费掉的传感器数据利用起来的。这也是机器学习,特别是深度学习,需要跨越的鸿沟。
天作之合
深度学习就是上面所说的,计算密集型,可以在现有的MCU上运行得很舒服。这很重要,因为很多其他的应用,都受到了“能在多短的时间里获得大量的储存空间”这样的限制。
相比之下,神经网络大部分的时间,都是用来把那些很大很大的矩阵乘到一起,翻来覆去用相同的数字,只是组合方式不同了。这样的运算,当然比从DRAM里读取大量的数值,要低碳得多。需要的数据没那么多的话,就可以用SRAM这样低功耗的设备来存储。如此说来,深度学习最适合MCU了,尤其是在8位元计算可以代替浮点运算的时候。
深度学习很低碳
皮特花了很多时间,来考虑每次运算需要多少皮焦耳。比如,MobileNetV2的图像分类网络,的最简单的结构,大约要用2,200万次运算。如果,每次运算要5皮焦,每秒钟一帧的话,这个网络的功率就是110微瓦,用纽扣电池也能坚持近一年。
对传感器也友好
最近几年,人们用神经网络来处理噪音信号,比如图像、音频、加速度计的数据等等。
如果可以在MCU上运行神经网络,那么更大量的传感器数据就可以得到处理,而不是浪费。那时,不管是语音交互,还是图像识别功能,都会变得更加轻便。
虽然,这还只是个理想。
原文传送门:https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/
1.2018年第6期《单片机与嵌入式系统应用》电子刊新鲜出炉!
2.还在论坛找IAR资料?IAR原厂免费培训了解一下!
3.人工智能时代,嵌入式与物联网工程师要扮演技术核心角色
4.一篇很完整的元器件选型指南
5.如何选择一个合适的嵌入式操作系统?
6.数据科学家常用的十大机器学习算法,都在这了!
这篇关于AI芯片已然存在,与既往的嵌入式处理器不可混淆!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!