使用purge_haplogs处理基因组杂合区域

2023-11-21 14:10

本文主要是介绍使用purge_haplogs处理基因组杂合区域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FALCON和Canu的组装后会得到一个单倍型融合的基因组,用来表示二倍体基因组。之后,FALCON Unzip和Supernova这类软件进一步处理其中等位基因区域,将这部分区间进行拆分。

当基因组某些区域可能有着比较高的杂合度,这会导致基因组该区域的两个单倍型被分别组装成primary contig, 而不是一个为primary contig, 另一个是associated haplotig. 如果下游分析主要关注于单倍型,这就会导致一些问题。

那么有没有解决方案呢?其实也很好办,就是找到相似度很高的contig,将他们拆分。目前已经有一些软件可以完成类似任务,如 HaploMerger2, Redundans, 这不过这些软件主要处理二代组装结果。

purge_haplogs则是最近开发,用于三代组装的基因组。它根据minimap2的比对结果,通过分析比对read的覆盖度决定谁去谁留。该工具适用于单倍型组装软件,例如 Canu, FALCON或 FALCON-Unzip primary contigs, 或者是分相后的二倍体组装(Falcon-Unzip primary contigs + haplotigs 。

它的工作流程如下图所示。一般只需要两个输入文件,组装草图(FASTA格式) 和 比对的BAM文件。同时还可以提供重复序列注释的BED文件,辅助处理高重复的contig。

2013053-aa0d1c1178c3046a.png
分析流程

建议: 用原来用于组装的read进行比对。对于多个匹配的read,建议采取random best,也就是随便找一个。

软件安装

purge_haplotigs依赖软件比较多,手动安装会很麻烦,但是他可以直接用bioconda装

conda create -n purge_haplotigs_env
conda activate purge_haplotigs_env
conda install purge_haplotigs

安装完成后需要一步测试

purge_haplotigs test

简明教程

数据准备。 需要下载的数据集分为两个部分,一个是FALCON-Unzip后的primary contig 和 halplotigs. 另一个则是已经比完后的BAM文件

mkdir purge_haplotigs_tutorial
cd purge_haplotigs_tutorial
wget https://zenodo.org/record/841398/files/cns_h_ctg.fasta
wget https://zenodo.org/record/841398/files/cns_p_ctg.aligned.sd.bam # 1.7G
wget https://zenodo.org/record/841398/files/cns_p_ctg.aligned.sd.bam.bai wget https://zenodo.org/record/841398/files/cns_p_ctg.fasta
wget https://zenodo.org/record/841398/files/cns_p_ctg.fasta.fai

当然我们不可能直接就拿到比对好的BAM文件,我们一般是有组装后的基因组以及用于组装的subread,假设这两个文件命名为, genome.fa 和 subreads.fasta.gz.

minimap2 -ax map-pb genome.fa subreads.fasta.gz \| samtools view -hF 256 - \| samtools sort -@ 8 -m 1G -o aligned.bam -T tmp.ali

如果你有二代测序数据,也可以用BWA-MEM进行比对得到BAM文件。

第一步:使用purge_haplotigs readhist从BAM中统计read深度,绘制柱状图。

purge_haplotigs  readhist  -b aligned.bam  -g genome.fasta  -t 20
# -t 线程数, 不宜过高,过高反而没有效果。

也就是下图,你能明显的看到图中有两个峰,一个是单倍型的覆盖度,另一个二倍型的覆盖度,

2013053-b3c0c46eba030da3.png
高杂合基因组read-depth histogram

你可能还想知道高纯合基因组是什么样的效果,我也找了一个纯合的物种做了也做了read-depth 柱状图,

2013053-77166f97f8b14c91.png
纯合基因组read-depth histogram

之后你需要根据read-depth 柱状图 确定这两个峰的位置用于下一步。下面是两个例子。对于我们则是,20,65,190.

2013053-7561308e761d13ee.png
两个例子

第二步: 根据read-depth信息选择阈值。

purge_haplotigs  contigcov  -i cns_p_ctg.aligned.sd.bam.gencov  -o coverage_stats.csv  -l 20  -m 75  -h 190

这一步生成的文件是"coverage_stats.csv"

第三步:区分haplotigs.

purge_haplotigs purge  -g cns_p_ctg.fasta  -c coverage_stats.csv  -b cns_p_ctg.aligned.sd.bam  -t 4  -a 60

这一步会得到如下文件

  • curated.artefacts.fasta:无用的contig,也就是没有足够覆盖度的contig.
  • curated.fasta:新的单倍型组装
  • curated.haplotigs.fasta:从原本组装分出来的haplotigs
  • curated.reassignments.tsv: 单倍型的分配信息
  • curated.contig_associations.log: 运行日志, 下面是其中一个记录,表示000004F_004和000004F_027是000004F_017的HAPLOTIG, 而000004F_017和000004F_013又是000004F,的HAPLOTIG。
000004F,PRIMARY -> 000004F_013,HAPLOTIG-> 000004F_017,HAPLOTIG -> 000004F_004,HAPLOTIG-> 000004F_027,HAPLOTIG

在"curated.reassignments.tsv"文件中有6列

  • reassigned_contig: 用于比较的contig
  • top_hit_contig: 最好的被比对的contig
  • second_hit_contig: 第二个被比对的contig
  • best_match_coverage: 最好的匹配覆盖度
  • max_match_coverage : 最高的匹配深度
  • reassignment: 标记为haplotype 还是 repeat,或者是keep

由于我们用的是单倍型组装primary contigs而不是二倍体组装的parimary + haplotigs, 因此我们需要将FALCON_Unzip的haplotgi合并到重新分配的haplotigs中,这样子我们依旧拥有二倍体组装结果

cat cns_h_ctg.fasta >> curated.haplotigs.fasta

原理介绍

为什么第一步的 read 覆盖深度分析能判断基因组是否冗余呢?这是因为对于坍缩的单倍型,那么含有等位的基因的read只能比对到该位置上,而如果杂合度太高被拆分成两个不同的contig,那么含有等位的基因的read就会分别比对到不同的read上,导致深度降低一半。下图A就是一个典型的包含冗余基因组的read覆盖度分布

2013053-2f26047d1da456f5.png
read-深度分析

分析流程的第二步的任务就是人工划分出如下图B部分,绿色的部分是坍缩单倍型contig,蓝色的部分是潜在的冗余contig。之后,分析流程会计算这些区域中的contig的覆盖度。 对于绿色部分中的contig,如果覆盖度低于80%, 会进行标记用于后续分析。如果深度非常低,那么很有可能就是组装引入错误,深度非常高的部分基本就是重复序列或者是细胞器的contig,这些黄色的contig可以在后续的组装出分开。

2013053-0ae4a373254ca9e8.png
划分区间

第三步就是同源序列进行识别和分配。所有标记的contig之后会用Minimap2在整个组装进行搜索,寻找相似度较高的离散区间(如下图C)。如果一个Contig的联配得分大于阈值(默认70%), 那么就会被标记为haplotigs. 如果一个contig的最大联配得分大于阈值(默认250%), 会被标记成重复序列,这有可能是潜在的有问题contig,或许是坍缩的contig或者低复杂度序列。

2013053-ca64a560ff4099bd.png
移除haplotigs

推荐阅读

  • Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies
  • https://bitbucket.org/mroachawri/purge_haplotigs

这篇关于使用purge_haplogs处理基因组杂合区域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402801

相关文章

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的