【C++】pow函数实现的伽马变换详解和示例

2023-11-21 13:20

本文主要是介绍【C++】pow函数实现的伽马变换详解和示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文通过原理和示例对伽马变换进行详解,并通过改变变换系数展示不同的效果,以帮助大家理解和使用。

原理

伽马变换是一种用于图像增强的技术,它可以用来提高或降低图像的对比度,常用于医学图像处理和计算机视觉等领域。伽马变换是通过将图像像素值映射到一个新的值,以达到对比度增强的效果。

伽马变换步骤具体可分为:
(1)图像转为灰度或自身便为灰度图像。
(2)像素值归一化到0-1之间
(3)计算像素值的gam此幂的值,使用pow函数,得到的值便为新图像的像素值。
pow()函数示例如下:

在头文件#include <cmath>中,函数原型:
double pow (double base, double exponent);
它接受两个参数:base(基数)和exponent(指数)。返回结果是基数的指数次幂。注意,pow函数可以用于浮点数和整数。对于整数,返回的结果也是整数,且只返回最接近的整数。示例:
pow(2,3)表示2的3次幂,输出结果为8

运行示例

#include <opencv2/opencv.hpp>
#include <cmath>using namespace cv;
using namespace std;void gammaTransform(Mat& img, Mat& result, double gamma) {result = img.clone();for (int y = 0; y < img.rows; y++) {for (int x = 0; x < img.cols; x++) {int index = y * img.cols + x;double pixel = img.at<uchar>(y, x);double transformed = pow((pixel / 255.0), gamma);result.at<uchar>(y, x) = round(transformed * 255.0);}}
}int main() {// 读取图像Mat img = imread("ceshi.jpg", IMREAD_GRAYSCALE);if (img.empty()) {cout << "Could not open or find the image" << endl;return -1;}// 创建目标图像Mat result;// 应用伽马变换,通过改变gam的值改变效果double gam = 0.5;gammaTransform(img, result,gam);// 显示和保存结果namedWindow("Source Image", WINDOW_NORMAL);imshow("Source Image", img);waitKey(0);destroyAllWindows();namedWindow("Gamma Transformed Image", WINDOW_NORMAL);imshow("Gamma Transformed Image", result);waitKey(0);destroyAllWindows();imwrite("grayceshi.jpg", img); // 保存结果图像imwrite("output0.5.jpg", result); // 保存结果图像return 0;
}

在这段代码中,我们首先使用OpenCV库中的imread函数读取输入图像。然后,我们创建一个新的Mat对象来存储伽马变换后的图像。接着,我们定义了一个名为gammaTransform的函数,该函数接受一个Mat对象(用于读取和写入图像数据)、一个Mat对象(用于存储结果图像)以及一个gamma系数。在函数内部,我们对每个像素应用伽马变换,并将结果存储在结果图像中。最后,我们在主函数中调用gammaTransform函数,显示源图像和变换后的图像,并保存结果图像。
下面我们通过改变gam的系数值来看具体的变换效果。
在这里插入图片描述
上面的为原图(灰度图),下面为改变系数的效果图。

系数为0.2

在这里插入图片描述

系数为0.5

在这里插入图片描述

系数为0.8

在这里插入图片描述

系数为2

在这里插入图片描述

系数为5

在这里插入图片描述

总结

伽马系数γ=1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0<γ<1,可以增加图像对比度;相反,如果图像整体或者感兴趣区域较亮,则令1<γ可以降低图像对比度。
通过不同系数值的效果展示也可以看出,系数值在0和1之间时,值越小图像越亮。系数值大于1时,值越大图像越暗。

这篇关于【C++】pow函数实现的伽马变换详解和示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402601

相关文章

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为