深度学习之生成唐诗案例(Pytorch版)

2023-11-21 12:20

本文主要是介绍深度学习之生成唐诗案例(Pytorch版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要思路:

对于唐诗生成来说,我们定义一个"S" 和 "E"作为开始和结束。

 示例的唐诗大概有40000多首,

首先数据预处理,将唐诗加载到内存,生成对应的word2idx、idx2word、以及唐诗按顺序的字序列。

Dataset_Dataloader.py
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoaderdef deal_tangshi():with open("poems.txt", "r", encoding="utf-8") as fr:lines = fr.read().strip().split("\n")tangshis = []for line in lines:splits = line.split(":")if len(splits) != 2:continuetangshis.append("S" + splits[1] + "E")word2idx = {"S": 0, "E": 1}word2idx_count = 2tangshi_ids = []for tangshi in tangshis:for word in tangshi:if word not in word2idx:word2idx[word] = word2idx_countword2idx_count += 1idx2word = {idx: w for w, idx in word2idx.items()}for tangshi in tangshis:tangshi_ids.extend([word2idx[w] for w in tangshi])return word2idx, idx2word, tangshis, word2idx_count, tangshi_idsword2idx, idx2word, tangshis, word2idx_count, tangshi_ids = deal_tangshi()class TangShiDataset(Dataset):def __init__(self, tangshi_ids, num_chars):# 语料数据self.tangshi_ids = tangshi_ids# 语料长度self.num_chars = num_chars# 词的数量self.word_count = len(self.tangshi_ids)# 句子数量self.number = self.word_count // self.num_charsdef __len__(self):return self.numberdef __getitem__(self, idx):# 修正索引值到: [0, self.word_count - 1]start = min(max(idx, 0), self.word_count - self.num_chars - 2)x = self.tangshi_ids[start: start + self.num_chars]y = self.tangshi_ids[start + 1: start + 1 + self.num_chars]return torch.tensor(x), torch.tensor(y)def __test_Dataset():dataset = TangShiDataset(tangshi_ids, 8)x, y = dataset[0]print(x, y)if __name__ == '__main__':# deal_tangshi()__test_Dataset()
TangShiModel.py:唐诗的模型
import torch
import torch.nn as nn
from Dataset_Dataloader import *
import torch.nn.functional as Fclass TangShiRNN(nn.Module):def __init__(self, vocab_size):super().__init__()# 初始化词嵌入层self.ebd = nn.Embedding(vocab_size, 128)# 循环网络层self.rnn = nn.RNN(128, 128, 1)# 输出层self.out = nn.Linear(128, vocab_size)def forward(self, inputs, hidden):embed = self.ebd(inputs)# 正则化层embed = F.dropout(embed, p=0.2)output, hidden = self.rnn(embed.transpose(0, 1), hidden)# 正则化层embed = F.dropout(output, p=0.2)output = self.out(output.squeeze())return output, hiddendef init_hidden(self):return torch.zeros(1, 64, 128)

 main.py:

import timeimport torchfrom Dataset_Dataloader import *
from TangShiModel import *
import torch.optim as optim
from tqdm import tqdmdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")def train():dataset = TangShiDataset(tangshi_ids, 128)epochs = 100model = TangShiRNN(word2idx_count).to(device)criterion = nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=1e-3)for idx in range(epochs):dataloader = DataLoader(dataset, batch_size=64, shuffle=True, drop_last=True)start_time = time.time()total_loss = 0total_num = 0total_correct = 0total_correct_num = 0hidden = model.init_hidden()for x, y in tqdm(dataloader):x = x.to(device)y = y.to(device)# 隐藏状态hidden = model.init_hidden()hidden = hidden.to(device)# 模型计算output, hidden = model(x, hidden)# print(output.shape)# print(y.shape)# 计算损失loss = criterion(output.permute(1, 2, 0), y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 参数更新optimizer.step()total_loss += loss.sum().item()total_num += len(y)total_correct_num += y.shape[0] * y.shape[1]# print(output.shape)total_correct += (torch.argmax(output.permute(1, 0, 2), dim=-1) == y).sum().item()print("epoch : %d average_loss : %.3f average_correct : %.3f use_time : %ds" %(idx + 1, total_loss / total_num, total_correct / total_correct_num, time.time() - start_time))torch.save(model.state_dict(), f"./modules/tangshi_module_{idx + 1}.bin")if __name__ == '__main__':train()

predict.py:

import torch
import torch.nn as nn
from Dataset_Dataloader import *
from TangShiModel import *device = torch.device("cuda" if torch.cuda.is_available() else "cpu")def predict():model = TangShiRNN(word2idx_count)model.load_state_dict(torch.load("./modules/tangshi_module_100.bin", map_location=torch.device('cpu')))model.eval()hidden = torch.zeros(1, 1, 128)start_word = input("输入第一个字:")flag = Nonetangshi_strs = []while True:if not flag:outputs, hidden = model(torch.tensor([[word2idx["S"]]], dtype=torch.long), hidden)tangshi_strs.append("S")flag = Trueelse:tangshi_strs.append(start_word)outputs, hidden = model(torch.tensor([[word2idx[start_word]]], dtype=torch.long), hidden)top_i = torch.argmax(outputs, dim=-1)if top_i.item() == word2idx["E"]:breakprint(top_i)start_word = idx2word[top_i.item()]print(tangshi_strs)if __name__ == '__main__':predict()

完整代码如下:

https://github.com/STZZ-1992/tangshi-generator.giticon-default.png?t=N7T8https://github.com/STZZ-1992/tangshi-generator.git

这篇关于深度学习之生成唐诗案例(Pytorch版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402341

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确