大数据项目:职务分析(一)——数据获取

2023-11-21 11:30

本文主要是介绍大数据项目:职务分析(一)——数据获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目介绍:该项目适合学习的时候使用,因为项目比较小,主要目的对猎聘当中的各个岗位的数据的获取和简单的分析,从多个方面分析岗位之间的关系以及薪资的差异。

采用的技术有:

python爬虫:

hadoop:hdfs存储数据

hive on spark : 进行数据分析

sqoop: 将分析的结果传输到关系型数据库当中

superset:进行数据的可视化

首先是将数据从猎聘官网当中获取:

爬取技术一栏当中的似是一个岗位对应的数据。

先获得各个岗位的url,进行跳转,在每个网页当获取有用的信息:比如:岗位,地址,薪资,公司规模,要求掌握的技术,学历要求和经验要求,最后,对这一页的数据爬取完之后,进行跳转,通过find-element-by-xpath(),来锁定到下一页的链接上,跳转到下一页再进行数据的爬取,如此往复,从而,得到所有的想要的数据。 

 话不多说,代码实现为:

from selenium import webdriver
from selenium.webdriver.chrome.webdriver import Options
from lxml import etree
import osdef share_brower():chrome_options = Options()# chrome_options.add_argument('--headless')   # 来判断浏览器的前后台运行,有图形化可以更好的展现她的活动chrome_options.add_argument('--disable-gpu')path='C:\Program Files (x86)\Google\Chrome\Application\chrome.exe'chrome_options.binary_location = pathbrower = webdriver.Chrome(chrome_options=chrome_options)return browerdef save(source, number, name1):tree = etree.HTML(source)position = tree.xpath('//ul/li//div[@class="job-title-box"]/div[1]/text()')addr = tree.xpath('//ul/li//div[@class="job-title-box"]/div[2]/span[2]/text()')salary = tree.xpath('//ul/li//div[@class="job-detail-header-box"]/span/text()')company = tree.xpath('//ul/li//div[@class="job-company-info-box"]/span/text()')scale = tree.xpath('//ul/li//div[@class="job-company-info-box"]/div[@class="company-tags-box ellipsis-1"]/span[last()]/text()')experience = tree.xpath('//ul/li//div[@class="job-labels-box"]/span[1]/text()')xueli = tree.xpath('//ul/li//div[@class="job-labels-box"]/span[2]/text()')keyword = tree.xpath('//ul/li//div[@class="job-labels-box"]/span/text()')mi = min(len(position), len(addr), len(salary), len(company), len(scale), len(xueli), len(experience))with open('./date/' + name1.strip() + "/" + str(number) + '.csv', 'w', encoding='utf-8') as fs:for l in range(mi):new = position[l] + ',' + addr[l] + ',' + salary[l] + ',' + company[l] + ',' + scale[l]+','+experience[l]+','+xueli[l]+'\t\n'fs.write(new)fs.close()with open('./keyword.txt', 'a', encoding='utf-8') as fs:ne = ''for i in keyword:ne = ne + i + ' 'fs.write(ne)fs.close()base_url = 'https://www.liepin.com'
brower = share_brower()
brower.get('https://www.liepin.com/it/')
brower.implicitly_wait(3)
page = brower.page_source
tree = etree.HTML(page)
name = tree.xpath('//ul[@class="sidebar float-left"]/li[1]//dd/a/text()')
url = tree.xpath('//ul[@class="sidebar float-left"]/li[1]//dd/a/@href')
for i in range(len(name)):if not os.path.exists('./date/'+name[i]):os.mkdir('./date/'+name[i]) #创建文件夹brower.get(base_url+url[i])brower.implicitly_wait(3)source = brower.page_sourcenumber = 1save(source, number, name[i])print(name[i])try:for j in range(9):element = brower.find_element_by_xpath('//div[@class="list-pagination-box"]//li[last()]/a')element.click()save(brower.page_source, number, name[i])number += 1except RuntimeError:print("*"*30+"有错误,但是可以执行的哦!!")continueelse:print("文件已经存在")os.rmdir('./date/'+name[i])continue
## //ul[@class="sidebar float-left"]/li[1]//dd/a/text() 相关职业
# //ul[@class="sidebar float-left"]/li[1]//dd/a/@href  对应的连接 每个连接底下都有十个页面 、爬取当中的数据
# 数据的存放 总共有49个类别的技术岗位 分别放在49个问价夹底下,文件夹以对应的职业命名 底下十个文件,每个文件表示每一页的数据
# ,文件的命名方式以1-10.csv ,保存的时候中间以逗号隔开,保存当当前的路径底下,然后爬取成功之后同意上传到大数据集
# 群的本地文件夹下面# //ul/li//div[@class="job-title-box"]/div[1]/text()  职位
# //ul/li//div[@class="job-title-box"]/div[2]/span[2]/text()  地址
# //ul/li//div[@class="job-detail-header-box"]/span/text()   薪资
# //ul/li//div[@class="job-company-info-box"]/span/text()   企业
# //ul/li//div[@class="job-company-info-box"]/div[@class="company-tags-box ellipsis-1"]
# /span[last()]/text() 公司规模
# //ul/li//div[@class="job-labels-box"]/span[1]/text()   工作经验
# //ul/li//div[@class="job-labels-box"]/span[2]/text()  招聘学历要求
# //ul/li//div[@class="job-labels-box"]/span/text()   //用正则将数据的后序删除掉,或者在hadoop当中处理
# //div[@class="list-pagination-box"]//li[last()] 下一页的标签 循环九次brower.quit()
# 最后退出

 最后结果为:

 

 

 每一层和里面的数据保存形式,都如上所述,后序通过简单的mapreduce实现数据的处理,上传至hdfs当中,下期继续。。。。

这篇关于大数据项目:职务分析(一)——数据获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402084

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映