torchaudio - Python wave 读取音频数据对比

2023-11-21 10:50

本文主要是介绍torchaudio - Python wave 读取音频数据对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchaudio - Python wave 读取音频数据对比

1. torchaudio: an audio library for PyTorch

https://github.com/pytorch/audio

Data manipulation and transformation for audio signal processing, powered by PyTorch.

torchaudio: an audio library for PyTorch
https://github.com/pytorch/audio

The following is the corresponding torchaudio versions and supported Python versions.

torchtorchaudiopython
master / nightlymaster / nightly>=3.6
1.5.00.5.0>=3.5
1.4.00.4.0==2.7, >=3.5, <=3.8

2. torchaudio.load(filepath, out=None, normalization=True, channels_first=True, num_frames=0, offset=0, signalinfo=None, encodinginfo=None, filetype=None)

https://pytorch.org/audio/

Loads an audio file from disk into a tensor.
将音频文件从磁盘加载到张量中。

2.1 Parameters

filepath (str or pathlib.Path) – Path to audio file. - 音频文件的路径。

out (torch.Tensor, optional) – An output tensor to use instead of creating one. (Default: None) - 使用输出张量 out 而不是创建一个张量。

normalization (bool, number, or callable, optional) – If boolean True, then output is divided by 1 << 31 (assumes signed 32-bit audio), and normalizes to [-1, 1]. If number, then output is divided by that number. If callable, then the output is passed as a parameter to the given function, then the output is divided by the result. (Default: True)

channels_first (bool) – Set channels first or length first in result. (Default: True) - 返回结果中第一维度是 channels or length。

num_frames (int, optional) – Number of frames to load. 0 to load everything after the offset. (Default: 0) - 要加载的帧数。

offset (int, optional) – Number of frames from the start of the file to begin data loading. (Default: 0) - 从文件开始到开始数据加载的帧数。

signalinfo (sox_signalinfo_t, optional) – A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined. (Default: None) - sox_signalinfo_t 类型,如果不能自动确定音频类型,这可能会有所帮助。

encodinginfo (sox_encodinginfo_t, optional) – A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined. (Default: None) - sox_encodinginfo_t 类型,如果不能自动确定音频类型,则可以设置。

filetype (str, optional) – A filetype or extension to be set if sox cannot determine it automatically. (Default: None) - 如果 sox 无法自动确定要设置的文件类型或扩展名。

2.2 Returns

An output tensor of size [C x L] or [L x C] where L is the number of audio frames and C is the number of channels. An integer which is the sample rate of the audio (as listed in the metadata of the file)

2.3 Return type

Tuple[torch.Tensor, int]

2.4 Example

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

2.5 data, sample_rate = torchaudio.load(audio_file, normalization=False)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.6 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
yongqiang chengProcess finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3. Python wave 读取音频数据

Python wave 读取音频数据,针对 sample width in bytes = 2 bytes,short / short int 可以表示的的最大范围是 [-32768, 32767],注意查看读取的数据。Python wave 同 torchaudio.load() 读取音频数据表示范围有区别,注意对比。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytesProcess finished with exit code 0

在这里插入图片描述
short / short int 可以表示的的最大范围是 [-32768, 32767]
2^15 = 32768
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4. 数据对比

  • torchaudio
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()
print("data[0, 189:205] = ")
print(data[0, 189:205])
print("data[1, 189:205] = ")
print(data[1, 189:205])data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
print("data_normalized[0, 189:205] = ")
print(data_normalized[0, 189:205])
print("data_normalized[1, 189:205] = ")
print(data_normalized[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.    131072.   -262144.196608.   -327680.    327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]
data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.    131072.   -131072.262144.   -262144.    262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]
data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]
yongqiang chengProcess finished with exit code 0
  • Python wave
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()print("wave_data[0, 189:205] = ")
print(wave_data[0, 189:205])
print("wave_data[1, 189:205] = ")
print(wave_data[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytes
wave_data[0, 189:205] = 
[   1   -2    2   -2    2   -4    3   -5    5   -8    8  -18   81  1353 -300]
wave_data[1, 189:205] = 
[   0   -2    1   -2    2   -2    4   -4    4   -7    7  -16   67  1165 -256]
yongqiang chengProcess finished with exit code 0

4.1 data, sample_rate = torchaudio.load(audio_file, normalization=False)

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.131072.   -262144.    196608.   -327680.327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.131072.   -131072.    262144.   -262144.262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]

2^31 = 2147483648
2^16 = 65536
2^15 = 32768

4.2 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

4.2 中归一化数据为 4.1 中对应数据除以 2^31 = 2147483648。针对 sample width in bytes = 2 bytes,4.2 中数据为 4.3 中对应原始数据除以 2^(31 - 16) = 2^15 = 32768

data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]

4.3 Python wave

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

wave_data[0, 189:205] = 
[   1   -2    2   -22   -4    3   -55   -8    8  -1881  135    3 -300]wave_data[1, 189:205] = 
[   0   -2    1   -22   -2    4   -44   -7    7  -1667  116    5 -256]

这篇关于torchaudio - Python wave 读取音频数据对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401878

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及