torchaudio - Python wave 读取音频数据对比

2023-11-21 10:50

本文主要是介绍torchaudio - Python wave 读取音频数据对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchaudio - Python wave 读取音频数据对比

1. torchaudio: an audio library for PyTorch

https://github.com/pytorch/audio

Data manipulation and transformation for audio signal processing, powered by PyTorch.

torchaudio: an audio library for PyTorch
https://github.com/pytorch/audio

The following is the corresponding torchaudio versions and supported Python versions.

torchtorchaudiopython
master / nightlymaster / nightly>=3.6
1.5.00.5.0>=3.5
1.4.00.4.0==2.7, >=3.5, <=3.8

2. torchaudio.load(filepath, out=None, normalization=True, channels_first=True, num_frames=0, offset=0, signalinfo=None, encodinginfo=None, filetype=None)

https://pytorch.org/audio/

Loads an audio file from disk into a tensor.
将音频文件从磁盘加载到张量中。

2.1 Parameters

filepath (str or pathlib.Path) – Path to audio file. - 音频文件的路径。

out (torch.Tensor, optional) – An output tensor to use instead of creating one. (Default: None) - 使用输出张量 out 而不是创建一个张量。

normalization (bool, number, or callable, optional) – If boolean True, then output is divided by 1 << 31 (assumes signed 32-bit audio), and normalizes to [-1, 1]. If number, then output is divided by that number. If callable, then the output is passed as a parameter to the given function, then the output is divided by the result. (Default: True)

channels_first (bool) – Set channels first or length first in result. (Default: True) - 返回结果中第一维度是 channels or length。

num_frames (int, optional) – Number of frames to load. 0 to load everything after the offset. (Default: 0) - 要加载的帧数。

offset (int, optional) – Number of frames from the start of the file to begin data loading. (Default: 0) - 从文件开始到开始数据加载的帧数。

signalinfo (sox_signalinfo_t, optional) – A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined. (Default: None) - sox_signalinfo_t 类型,如果不能自动确定音频类型,这可能会有所帮助。

encodinginfo (sox_encodinginfo_t, optional) – A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined. (Default: None) - sox_encodinginfo_t 类型,如果不能自动确定音频类型,则可以设置。

filetype (str, optional) – A filetype or extension to be set if sox cannot determine it automatically. (Default: None) - 如果 sox 无法自动确定要设置的文件类型或扩展名。

2.2 Returns

An output tensor of size [C x L] or [L x C] where L is the number of audio frames and C is the number of channels. An integer which is the sample rate of the audio (as listed in the metadata of the file)

2.3 Return type

Tuple[torch.Tensor, int]

2.4 Example

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

2.5 data, sample_rate = torchaudio.load(audio_file, normalization=False)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.6 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
yongqiang chengProcess finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3. Python wave 读取音频数据

Python wave 读取音频数据,针对 sample width in bytes = 2 bytes,short / short int 可以表示的的最大范围是 [-32768, 32767],注意查看读取的数据。Python wave 同 torchaudio.load() 读取音频数据表示范围有区别,注意对比。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytesProcess finished with exit code 0

在这里插入图片描述
short / short int 可以表示的的最大范围是 [-32768, 32767]
2^15 = 32768
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4. 数据对比

  • torchaudio
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()
print("data[0, 189:205] = ")
print(data[0, 189:205])
print("data[1, 189:205] = ")
print(data[1, 189:205])data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
print("data_normalized[0, 189:205] = ")
print(data_normalized[0, 189:205])
print("data_normalized[1, 189:205] = ")
print(data_normalized[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.    131072.   -262144.196608.   -327680.    327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]
data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.    131072.   -131072.262144.   -262144.    262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]
data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]
yongqiang chengProcess finished with exit code 0
  • Python wave
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()print("wave_data[0, 189:205] = ")
print(wave_data[0, 189:205])
print("wave_data[1, 189:205] = ")
print(wave_data[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytes
wave_data[0, 189:205] = 
[   1   -2    2   -2    2   -4    3   -5    5   -8    8  -18   81  1353 -300]
wave_data[1, 189:205] = 
[   0   -2    1   -2    2   -2    4   -4    4   -7    7  -16   67  1165 -256]
yongqiang chengProcess finished with exit code 0

4.1 data, sample_rate = torchaudio.load(audio_file, normalization=False)

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.131072.   -262144.    196608.   -327680.327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.131072.   -131072.    262144.   -262144.262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]

2^31 = 2147483648
2^16 = 65536
2^15 = 32768

4.2 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

4.2 中归一化数据为 4.1 中对应数据除以 2^31 = 2147483648。针对 sample width in bytes = 2 bytes,4.2 中数据为 4.3 中对应原始数据除以 2^(31 - 16) = 2^15 = 32768

data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]

4.3 Python wave

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

wave_data[0, 189:205] = 
[   1   -2    2   -22   -4    3   -55   -8    8  -1881  135    3 -300]wave_data[1, 189:205] = 
[   0   -2    1   -22   -2    4   -44   -7    7  -1667  116    5 -256]

这篇关于torchaudio - Python wave 读取音频数据对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401878

相关文章

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经