如何使用MONAI构建多分类dataset--直接从文件夹加载数据

2023-11-21 06:59

本文主要是介绍如何使用MONAI构建多分类dataset--直接从文件夹加载数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


如图所示,做多类别分类,每个文件夹代表一个类别,所有图像均为NIFTI格式,如何加载进 MONAI 进行训练?

在这之前,我们来看看 MONAI dataset 加载方法:

MONAI dataset 的数据(image, label)输入有两种形式,一种是 array(数组), 一种是dict(字典)。

简单区分一下

以 array 形式加载数据

images = ["IXI314-IOP-0889-T1.nii.gz","IXI249-Guys-1072-T1.nii.gz","IXI609-HH-2600-T1.nii.gz","IXI173-HH-1590-T1.nii.gz","IXI020-Guys-0700-T1.nii.gz",]labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)train_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())

从代码里很容易看到,images 和 labels 都是 array, 直接作为 ImageDataset 的参数就行。

以 dict 形式加载数据

images = ["IXI314-IOP-0889-T1.nii.gz","IXI249-Guys-1072-T1.nii.gz","IXI609-HH-2600-T1.nii.gz","IXI173-HH-1590-T1.nii.gz","IXI020-Guys-0700-T1.nii.gz",]labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)train_files = [{"img": img, "label": label} for img, label in zip(images, labels)]
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4, pin_memory=torch.cuda.is_available())

这里 images 和 labels 都是 array, 只不过最后会把他们打包成一个字典,使得每个样本的 image和label相对应起来。然后传给 Dataset。

所以,回到最初的问题,不管用array形式还是dict形式,我们都需要构建一个 images/labels, 其中images里面是每个image的地址,如果是分类问题,labels是每个图像的类别, 如果是分割问题,则是ground truth的地址。

进一步的问题是:如何给文件夹的每个图像定义label?

当然,这在torchvision中,有一个函数(ImageFolder)可以轻松搞定!

但是!他的缺点是不可以加载后缀为gz的文件,但是医学图像大部分都是三维图像,后缀为nii.gz,怎么办???

我们可以借鉴他的思路,自己写一个支持 .gz文件的不就好了。

说干就干

第一种:直接修改源代码

查看源码,它不支持 gz的主要原因是它指定了后缀为下面这些👇

IMG_EXTENSIONS = (‘.jpg’, ‘.jpeg’, ‘.png’, ‘.ppm’, ‘.bmp’, ‘.pgm’, ‘.tif’, ‘.tiff’, ‘.webp’)

因为不包含gz,所以不支持。

源码在torchvision/datasets/folder.py

那一种简单粗暴地方法就是直接修改 IMG_EXTENSIONS,在后面加一个 ‘.gz’,就可以使用了。

使用案例:

from torchvision.datasets import ImageFolder
data_root = '/dataset'
dataset = ImageFolder(root=data_root)
classes = dataset.classes  # 获得类别名称(文件夹的名字)
class_to_idx = dataset.class_to_idx # 获得类别对应的索引或标签
images_labels = dataset.imgs
images = [tup[0] for tup in images_labels] # array
labels = [tup[1] for tup in images_labels] # array# for dict
train_files = [{'image': tup[0], 'label': tup[1]} for tup in images_labels] # dict

然后就可以传到上述两种dataset了,完美解决👍👍

但是这种方法对源代码造成了破坏,不易移植,虽然简单粗暴,但是不推荐!!

我们可以根据他的思路自己写一个

第二种:构建自己的ImageFolder

构建思路:

  • step 1 获取文件夹名称作为classes,并给它标签。
def find_classes(directory: str):"""Finds the class folders in a dataset."""classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())if not classes:raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}return classes, class_to_idx

  • step 2 遍历文件夹,赋予每个图像标签
    在这一步中,我们会检查每个图像的后缀。
img_label_dict = []
imgs = []
labels = []
for target_class in sorted(class_to_idx.keys()):class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class)if not os.path.isdir(target_dir):continuefor root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):for fname in sorted(fnames):if is_valid_file(fname): # 判断后缀是否有效path = os.path.join(root, fname)item = {'img': path, 'label': class_index}img_label_dict.append(item)imgs.append(path)labels.append(class_index)

这是关键代码,不全。

最后贴上完整代码

import os
from typing import Any, Callable, cast, Dict, List, Optional, Tuple# 从 data 根目录自动获取不同的类别文件夹,并自动给文件夹标签
def find_classes(directory: str):"""Finds the class folders in a dataset."""classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())if not classes:raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}return classes, class_to_idx# 检查 file 的后缀是不是在允许的扩展中
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool:"""Checks if a file is an allowed extension.Args:filename (string): path to a fileextensions (tuple of strings): extensions to consider (lowercase)Returns:bool: True if the filename ends with one of given extensions"""return filename.lower().endswith(extensions)# 从根目录中获取 图像的类别,以及自动为类别设置类标签,返回【图像-标签对, 类别名, 类别对应的索引等】
def make_dataset(directory: str,class_to_idx: Optional[Dict[str, int]] = None,extensions: Optional[Tuple[str, ...]] = None,is_valid_file: Optional[Callable[[str], bool]] = None,
) -> List[Tuple[str, int]]:"""Generates a list of samples of a form (path_to_sample, class)."""directory = os.path.expanduser(directory)if class_to_idx is None:classes, class_to_idx = find_classes(directory)elif not class_to_idx:raise ValueError("'class_to_index' must have at least one entry to collect any samples.")both_none = extensions is None and is_valid_file is Noneboth_something = extensions is not None and is_valid_file is not Noneif both_none or both_something:raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")if extensions is not None:def is_valid_file(x: str) -> bool:return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions))is_valid_file = cast(Callable[[str], bool], is_valid_file)img_label_dict = []imgs = []labels = []available_classes = set()for target_class in sorted(class_to_idx.keys()):class_index = class_to_idx[target_class]target_dir = os.path.join(directory, target_class)if not os.path.isdir(target_dir):continuefor root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):for fname in sorted(fnames):if is_valid_file(fname):path = os.path.join(root, fname)item = {'img': path, 'label': class_index}img_label_dict.append(item)imgs.append(path)labels.append(class_index)if target_class not in available_classes:available_classes.add(target_class)empty_classes = set(class_to_idx.keys()) - available_classesif empty_classes:msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "if extensions is not None:msg += f"Supported extensions are: {', '.join(extensions)}"raise FileNotFoundError(msg)return img_label_dict, imgs, labels, classes, class_to_idxif __name__ == '__main__':data_root = 'dataset'# classes, class_to_idx = find_classes(data_root)# 允许的扩展名extensions = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp', '.gz')img_label_dict, imgs, labels, classes, class_to_idx= make_dataset(data_root, extensions=extensions)

完结~

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

这篇关于如何使用MONAI构建多分类dataset--直接从文件夹加载数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400632

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain