【@胡锡进】大模型量化分析- 福耀玻璃 600660.SH

2023-11-21 06:50

本文主要是介绍【@胡锡进】大模型量化分析- 福耀玻璃 600660.SH,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • SARIMA模型:
import pandas as pd
import numpy as np
from statsmodels.tsa.statespace.sarimax import SARIMAX# 将日期转换为datetime格式
data['date'] = pd.to_datetime(data['date'], format='%Y%m%d')# 创建SARIMA模型
model = SARIMAX(data['close'], order=(1, 0, 0), seasonal_order=(1, 1, 1, 12))# 拟合模型
model_fit = model.fit()# 预测未来3天的价格
future_dates = pd.date_range(start=data['date'].iloc[-1], periods=3, freq='D')
forecast = model_fit.get_forecast(steps=3)
predicted_values = forecast.predicted_mean# 输出预测结果
print(predicted_values)
  • 简单移动平均线(SMA)模型:
# 计算简单移动平均线
data['SMA'] = data['close'].rolling(window=7).mean()# 预测未来3天的价格(使用最近7天的平均值作为预测值)
last_7_days = data['close'].tail(7)
predicted_values = np.mean(last_7_days)# 输出预测结果
print(predicted_values)
  • 指数加权移动平均线(EMA)模型:
# 计算指数加权移动平均线
data['EMA'] = data['close'].ewm(span=7, adjust=False).mean()# 预测未来3天的价格(使用最近一个指数加权移动平均值作为预测值)
last_EMA = data['EMA'].iloc[-1]
predicted_values = last_EMA# 输出预测结果
print(predicted_values)
  • Bollinger带模型:
# 计算布林带指标
data['MA'] = data['close'].rolling(window=20).mean()
data['std'] = data['close'].rolling(window=20).std()
data['upper_band'] = data['MA'] + 2 * data['std']
data['lower_band'] = data['MA'] - 2 * data['std']# 预测未来3天的价格(使用最近一个布林带的上轨值作为预测值)
last_upper_band = data['upper_band'].iloc[-1]
predicted_values = last_upper_band# 输出预测结果
print(predicted_values)
  • 相对强弱指标(RSI)模型:
# 计算相对强弱指标
data['delta'] = data['close'].diff()
data['gain'] = np.where(data['delta'] >= 0, data['delta'], 0)
data['loss'] = np.where(data['delta'] < 0, -data['delta'], 0)
data['avg_gain'] = data['gain'].rolling(window=14).mean()
data['avg_loss'] = data['loss'].rolling(window=14).mean()# 计算相对强弱指标
data['RS'] = data['avg_gain'] / data['avg_loss']
data['RSI'] = 100 - (100 / (1 + data['RS']))# 预测未来3天的价格(使用最近一个相对强弱指标值作为预测值)
last_RSI = data['RSI'].iloc[-1]
predicted_values = last_RSI# 输出预测结果
print(predicted_values)
  • 随机指标(KD指标)模型:
# 计算随机指标(KD指标)
data['lowest_low'] = data['low'].rolling(window=9).min()
data['highest_high'] = data['high'].rolling(window=9).max()
data['%K'] = (data['close'] - data['lowest_low']) / (data['highest_high'] - data['lowest_low']) * 100
data['%D'] = data['%K'].rolling(window=3).mean()# 预测未来3天的价格(使用最近一个随机指标值作为预测值)
last_%K = data['%K'].iloc[-1]
predicted_values = last_%K# 输出预测结果
print(predicted_values)
  • 线性回归模型:
from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()# 准备训练数据
X = data['date'].values.reshape(-1, 1)
y = data['close']# 拟合模型
model.fit(X, y)# 预测未来3天的价格
future_dates = pd.date_range(start=data['date'].iloc[-1], periods=3, freq='D')
X_future = future_dates.values.reshape(-1, 1)
predicted_values = model.predict(X_future)# 输出预测结果
print(predicted_values)
  • 随机森林回归模型:
from sklearn.ensemble import RandomForestRegressor# 创建随机森林回归模型
model = RandomForestRegressor()# 准备训练数据
X = data['date'].values.reshape(-1, 1)
y = data['close']# 拟合模型
model.fit(X, y)# 预测未来3天的价格
future_dates = pd.date_range(start=data['date'].iloc[-1], periods=3, freq='D')
X_future = future_dates.values.reshape(-1, 1)
predicted_values = model.predict(X_future)# 输出预测结果
print(predicted_values)
  • 支持向量回归(SVR)模型:
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler# 创建支持向量回归模型
model = SVR()# 准备训练数据
X = data['date'].values.reshape(-1, 1)
y = data['close']# 特征缩放
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 拟合模型
model.fit(X_scaled, y)# 预测未来3天的价格
future_dates = pd.date_range(start=data['date'].iloc[-1], periods=3, freq='D')
X_future = future_dates.values.reshape(-1, 1)
X_future_scaled = scaler.transform(X_future)
predicted_values = model.predict(X_future_scaled)# 输出预测结果
print(predicted_values)

【@胡锡进】大模型量化分析- 福耀玻璃 600660.SH

这篇关于【@胡锡进】大模型量化分析- 福耀玻璃 600660.SH的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400584

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的