Python彩色图像旋转+平移变换数学原理及实现

2023-11-21 03:20

本文主要是介绍Python彩色图像旋转+平移变换数学原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

图像的几何变换在图像处理中被经常使用,其中图像旋转又是使用频率很高的变换,不仅应用于普通的图像的处理中,也会用于机器学习中的图像数据增强。图像旋转的数学原理很简单,就是简单的矩阵乘法。
本文给出了图像旋转的Python详细实现过程(纯手工),此外也给出了python内嵌函数roate的用法。

二、数学原理及公式

学过线性代数的童鞋都知道如下的矩阵表示旋转矩阵:
在这里插入图片描述
如果再加上平移,则可以用齐次坐标的表示形式:
在这里插入图片描述
假设旋转之前的坐标为(x,y),绕坐标原点旋转之后的坐标为(x*, y*),则旋转+平移变换公式的矩阵形式为:
在这里插入图片描述
对于图像旋转平移变换而言,其实就是像素的坐标旋转,像素跟着坐标走而已。

三、Python手工实现图像旋转+平移

1.单通道图像旋转平移变换
图像旋转是以图像中心为旋转轴,因此图像在旋转之前需要把像素坐标进行中心化,然后再进行变换,代码如下:

#im为单通道图像像素矩阵
#theta为旋转角度(单位是:度°)
#deltaX和deltaY是沿着两个坐标轴方向的平移量
#返回旋转+平移变换结果图像imRT
def SingleChannelRatTrans( im, theta, deltaX, deltaY ):[m, n] = np.shape( im )halfM = np.int( np.floor(m / 2) )halfN = np.int( np.floor(n / 2) )imRT = np.zeros( [ m, n] )angle = theta / 180 * 3.1415926for i in range(m):for j in range(n):ii = i - halfMjj = j - halfNi1 = round( ii * math.cos( angle ) + jj * math.sin( angle ) + halfM + deltaX )j1 = round( -ii * math.sin( angle ) + jj * math.cos( angle ) + halfN + deltaY )if i1 >= 0 and  i1 < m and j1 >= 0 and j1 < n:imRT[i][j] = im[i1][j1]imRT = imRT.clip( 0, 255 )#限制灰度值在0~255之间imRT = np.rint(imRT).astype('uint8')#设置像素的数据类型 return imRT

2.灰度图像或彩色图像旋转平移变换
灰度图像直接调用前面的单通道图像变换函数即可。
彩色图像针对R、G、B分量分别调用单通道图变换函数即可。

def ImageRatationTranslation( im, theta, deltaX, deltaY ):dims = np.shape( im )#获取图像维数lens = len( dims )   #lens值为2则是灰度图像,为3则是彩色图像if lens == 2:#单通道图像imRT = SingleChannelRatTrans( im, theta, deltaX, deltaY )if lens == 3:#三通道图像imr = im[ :, :, 0 ]img = im[ :, :, 1 ]imb = im[ :, :, 2 ]imrRT = SingleChannelRatTrans( imr, theta, deltaX, deltaY )imgRT = SingleChannelRatTrans( img, theta, deltaX, deltaY )imbRT = SingleChannelRatTrans( imb, theta, deltaX, deltaY )imRT = np.stack( ( imrRT, imgRT, imbRT ), 2  )return imRT

3.完整的图像旋转平移变换代码

#图像旋转+平移变换
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import math
#单通道图像的旋转+平移变换
#im为单通道图像像素矩阵
#theta为旋转角度(单位是:度°)
#deltaX和deltaY是沿着两个坐标轴方向的平移量
#返回旋转+平移变换结果图像
def SingleChannelRatTrans( im, theta, deltaX, deltaY ):[m, n] = np.shape( im )halfM = np.int( np.floor(m / 2) )halfN = np.int( np.floor(n / 2) )imRT = np.zeros( [ m, n] )angle = theta / 180 * 3.1415926for i in range(m):for j in range(n):ii = i - halfMjj = j - halfNi1 = round( ii * math.cos( angle ) + jj * math.sin( angle ) + halfM + deltaX )j1 = round( -ii * math.sin( angle ) + jj * math.cos( angle ) + halfN + deltaY )if i1 >= 0 and  i1 < m and j1 >= 0 and j1 < n:imRT[i][j] = im[i1][j1]imRT = imRT.clip( 0, 255 )#限制灰度值在0~255之间imRT = np.rint(imRT).astype('uint8')#设置像素的数据类型 return imRT
#图像旋转+平移变换,可以是灰度图像,也可以是彩色图像
#画布大小为原图像的大小,因此旋转平移之后会有部分像素看不到
def ImageRatationTranslation( im, theta, deltaX, deltaY ):dims = np.shape( im )#获取图像维数lens = len( dims )   #lens值为2则是灰度图像,为3则是彩色图像if lens == 2:#单通道图像imRT = SingleChannelRatTrans( im, theta, deltaX, deltaY )if lens == 3:#三通道图像imr = im[ :, :, 0 ]img = im[ :, :, 1 ]imb = im[ :, :, 2 ]imrRT = SingleChannelRatTrans( imr, theta, deltaX, deltaY )imgRT = SingleChannelRatTrans( img, theta, deltaX, deltaY )imbRT = SingleChannelRatTrans( imb, theta, deltaX, deltaY )imRT = np.stack( ( imrRT, imgRT, imbRT ), 2  )return imRTdef main():im = np.array( Image.open('dog.jpg', 'r') )theta = -45imRT = ImageRatationTranslation( im, theta, 10, -80 )plt.figure()plt.imshow( im, cmap = 'gray' )plt.axis( 'off' )plt.figure()plt.imshow( imRT, cmap = 'gray' )plt.axis( 'off' )if __name__ == '__main__':main()

运行结果:
在这里插入图片描述
在这里插入图片描述

四、Python内嵌的命令rotate

语法规则:
output = im.rotate( angle, method )
其中im是图像矩阵,可以是单通道,也可以是多通道
angle是旋转角度,单位是度°,正值为逆时针,负值为顺时针
method是插值方法,可以是nearest、bilinear等
output是旋转之后的图像。
例如:

im = Image.open('dog.jpg', 'r')
imRT = im.rotate( 45, Image.NEAREST )
plt.figure()
plt.imshow( imRT, cmap = 'gray' )
plt.axis( 'off' )

运行结果如下:
在这里插入图片描述

这篇关于Python彩色图像旋转+平移变换数学原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/399476

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形