杂文散谈:SLAM的未来与发展趋势

2023-11-20 21:59

本文主要是介绍杂文散谈:SLAM的未来与发展趋势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:深蓝学院
链接:https://zhuanlan.zhihu.com/p/44938806
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

2018年7月底,深蓝学院发起并承办了“第一届全国SLAM技术论坛”。浙江大学章国锋老师、香港科技大学沈劭劼老师、上海交通大学邹丹平老师、中科院自动化所申抒含老师在“圆桌论坛:SLAM技术发展趋势”上分享了SLAM技术的趋势,现将内容整理公布,希望更多SLAMer受益。

章国锋:由于我的研究方向更偏向于视觉SLAM,所以我会从我的角度来讲一讲SLAM技术的发展趋势。

首先,我认为无论是视觉SLAM、视觉惯导SLAM、还是其他多传感信息融合SLAM,相关理论目前都已经发展到了一定的成熟度。之所以近年来SLAM被广泛关注,也是因为它已经在某些领域得到了应用。比如AR领域,Google和苹果分别推出的ARCore和ARKit。另外,SLAM技术也被应用于自动驾驶领域。因此,我认为SLAM的相关理论已经发展得比较成熟但是,在实际应用中,问题还相当复杂。因此,我们做了很多工程实际中的系统优化和打磨的相关工作。

另外,从做研究角度来讲,很多老师和同学比较关心的是:“我做SLAM,那么论文该怎么发?”我认为目前有两个趋势可以把握,一个趋势是将SLAM与深度学习相结合。而且,我也认为将SLAM与深度学习结合更容易有创新性,同时也符合现在的发展趋势。因此,我认为结合深度学习和SLAM可以发表一些论文。另一个趋势是,要使用新的传感器,比如最近新出现的Event Camera。使用Event Camera做SLAM近年来也取得了很多成果。因此,我认为使用新型传感器或者是研究原来没有被用于SLAM的多传感器的融合,是一个很好的研究方向,也相对容易发论文。

最后,从产业应用的角度来讲,我认为还是存在很多问题的。因为,目前很多结合深度学习的SLAM系统仍然处于研究阶段,距离工程实际应用还有一定的距离,需要我们做更多的研究。

申抒含:我从我的角度出发来讲一讲SLAM技术的发展趋势。

首先,从做研究的角度出发,我认为做SLAM和三维重建这些几何视觉方向的研究是非常难入门的。相对于研究deep learning,研究几何视觉会比较难发论文。例如我们课题组的学生,一般要到博士三年级或四年级才能开始写论文,前面几年都是在打基础。从发表论文的角度来说,做三维视觉相对来说确实难一些、慢一些。但是,我认为这也是一个机遇。这意味着在这个领域,想要很深入的理解SLAM是有一定的门槛的,而一旦你通过了这个门槛,你就达到了一定的认知高度,你就拥有了自己的独门绝技,未来无论是就业还是做研究,都有比较强的竞争力。因此,既然大家今天来参加这个论坛,那么一定是对三维几何视觉这个论题感兴趣的,我建议大家执著地坚持下去,会有好的结果的。

其次,从应用角度出发,我们当然希望基于视觉的SLAM和三维重建可以尽快落地、尽快产品化。但是,基于视觉传感器的SLAM和三维重建有一个很大的问题,那就是视觉传感器相对于高精度IMU、差分GPS和高分辨率的激光雷达等传感器来说精度不够高。同时,随着无人驾驶汽车、智能机器人等应用的不断推进,使得高精度的IMU、差分GPS和高分辨率的激光雷达等以前价格昂贵、产量很小、很难商用推广的传感器,正逐渐变得越来越便宜、越来越容易获取。在这种情况下,视觉传感器所能起到的作用会被一定程度的压制。比如做无人车,用激光雷达加高精度的差分GPS来做构图和定位是最传统、最有效的方式,而基于视觉的方式只能作为一个补充。但是,反过来想,这也会促进视觉算法的发展,不断提高视觉算法的鲁棒性,例如运用deep learning来解决传统视觉上的一些瓶颈的问题。目前来讲,基于视觉传感器的SLAM,最大的特点是价格便宜。图像传感器相对于其他传感器来说,它的价格永远是最低的,因为相机是我们最常见的设备。在这个前提下,如果我们能够让图像传感器在某种程度上替代其它的昂贵设备或者是辅助昂贵的设备来完成工作,那么对于视觉来说也是在未来应用中值得突破的地方。当然,我们还是希望视觉传感器的性能最终能够接近昂贵的激光雷达或者是差分GPS的性能,从而使它能够商用推广。目前来看,这还是有一定距离的,还有很多本质的问题需要我们去努力克服。

沈劭劼:我非常同意申老师所说的做SLAM是非常苦的这个观点。大家可能也都是花了两三年时间来打基础。但是,我认为这是非常值得的。在我自己的研究组里面,每个新进来的学生,我都会让他先手写Bundle Adjustment,最多只能用Eigen库,其它的库都不能用。写了BA之后,再开始看其它的研究内容。总体来说,我认为这个锻炼对他们来说收获还是比较大的。因为在写Bundle Adjustment的过程中,像非线性优化、各种调参技巧、可观测性问题、前端后端的连接问题、工程实践技巧、多传感器同步标定等问题,他们都亲自解决过一遍。在此之后,当他们遇到真实的工程问题时才会比较游刃有余。但是,有这么多知识需要学习,不花这么多时间也比较难实现,所以基本上就是目前这种状态。

首先,关于技术方面,因为我是机器人背景,所以我更倾向于研究如何真实解决工程问题,而不是一定要用某一种传感器、研究某一个问题、或者是一定要基于某一种概念去解决问题。因此,从解决工程问题的角度出发,我更愿意把SLAM问题看作是一个多传感器融合的问题。本质上,我们需要做的就是把多种传感器的model写清楚,然后选用某种类型的最小二乘去求解。至于是用单目相机还是双目相机、还是加GPS、加轮子里程计、加IMU其实并没有问题,因为那些传感器的model都做出来了。

其次,我会倾向于跳出纯SLAM这种比较狭窄的定义,而把SLAM问题当成是一个机器人的环境感知问题。这个问题包括真正意义上的建图,并不是指稀疏建图,也包括对多种不同天气以及动态环境建立真实的model,也就是simulative model方面的问题,而不能直接去掉动态环境这个因素。

最后,在SLAM工程的实际应用中。我认为需要区分清楚我们需要的到底是SLAM,还是L+M。我们需要Localization和Mapping,很多地方都需要这两个内容,但是在很多情况下我们并不需要Simultaneous Localization and Mapping。特别是在自动驾驶领域,绝大多数情况下,我们不需要做到simultaneous。但是在某些应用中,比如在VIO中,我们做的是simultaneous localization and mapping in the local environment。但是,环境的scale的大小需要根据我们的实际应用来确定。总的来说,SLAM是一个跟实际应用连接非常紧密的一个领域。希望大家能够修炼好基本功,在能手写Bundle Adjustment之后,当真正遇到一些特别的问题时,见招拆招去解决问题,不要拘泥于用某种特定形式的方法或者用某种特定的传感器。

邹丹平:我从沈老师这里学到很好的一点,那就是让学生手写Bundle Adjustment。以前我都是让学生调用Ceres,以后我也要让他们手写一个Bundle Adjustment。

关于SLAM,我跟各位老师的观点也是一样的。正如沈老师所说,SLAM要跟实际应用相结合。因为SLAM本身只是一个方法,也是一种技术,虽然它现在可以被应用到各个领域,但是它必须跟具体的应用场景结合才能发挥它的价值。当我与一些同学和朋友讨论时,有些同学提出,当他把一套开源的SLAM代码下载下来后,他发现有的代码在无人机数据集上面表现得很好,但是在小车上面表现得就不好。出现这个问题,就是因为每一套SLAM系统都与它的应用场景特性有关。无人机的VIO算法非常适合无人机这样的应用场景,因为无人机的机动性强,在飞行中加速度变化较大,所以运用了这一特性的无人机VIO算法在这种场景下的表现非常好。但是,如果把这套VIO算法应用到运行非常缓慢、平稳的小车上面,你会面临一个问题,车子在匀速运动下的加速度为零,这就造成了它的尺度的不可观测性,也意味着它失去了加速计的支持。没了加速计的支持,这个SLAM也就只相当于一个纯粹的Visual SLAM。因此,它的性能表现就会很差。

举这样的一个例子,是想说明在具体应用场景里面,我们要先把目标应用搞清楚,然后把后面的问题挖掘好,再去研究如何改进这个SLAM系统,如何把挖掘到的问题解决好。以问题为导向,可以更好地解决工程实际的问题。

这篇关于杂文散谈:SLAM的未来与发展趋势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397729

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

国产游戏行业的崛起与挑战:技术创新引领未来

国产游戏行业的崛起与挑战:技术创新引领未来 近年来,国产游戏行业蓬勃发展,技术水平不断提升,许多优秀作品在国际市场上崭露头角。从画面渲染到物理引擎,从AI技术到服务器架构,国产游戏已实现质的飞跃。然而,面对全球游戏市场的激烈竞争,国产游戏技术仍然面临诸多挑战。本文将探讨这些挑战,并展望未来的机遇,深入分析IT技术的创新将如何推动行业发展。 国产游戏技术现状 国产游戏在画面渲染、物理引擎、AI

未来工作趋势:零工小程序在共享经济中的作用

经济在不断发展的同时,科技也在飞速发展。零工经济作为一种新兴的工作模式,正在全球范围内迅速崛起。特别是在中国,随着数字经济的蓬勃发展和共享经济模式的深入推广,零工小程序在促进就业、提升资源利用效率方面显示出了巨大的潜力和价值。 一、零工经济的定义及现状 零工经济是指通过临时性、自由职业或项目制的工作形式,利用互联网平台快速匹配供需双方的新型经济模式。这种模式打破了传统全职工作的界限,为劳动

AI模型的未来之路:全能与专精的博弈与共生

人工智能(AI)领域正迅速发展,伴随着技术的不断进步,AI模型的应用范围也在不断扩展。当前,AI模型的设计和使用面临两个主要趋势:全能型模型和专精型模型。这两者之间的博弈与共生将塑造未来的AI技术格局。本文将从以下七个方面探讨AI模型的未来之路,并提供实用的代码示例,以助于研究人员和从业者更好地理解和应用这些技术。 一、AI模型的全面评估与比较 1.1 全能型模型 全能型AI模型旨在在多

龙蜥社区首推 AI 原生操作系统路线,三大重磅计划协同生态布局未来

近日,2024 龙蜥操作系统大会(OpenAnolis Conference)在北京圆满召开,此次大会由中国计算机学会开源发展委员会、中关村科学城委员会、海淀区委网信办、中国开源软件推进联盟指导,龙蜥社区主办,阿里云、浪潮信息、Intel、中兴通讯、Arm、中科方德等 24 家理事单位共同承办,主题为“进化·重构·赴未来”。北京市委网信办、海淀区委网信办等领导莅临指导,中国工程院院士、浙江大学信息

孙宇晨:区块链领域的时代先锋,每一步引领未来趋势

​孙宇晨,这位在区块链领域崭露头角的青年企业家,凭借着敏锐的洞察力和坚定的决心,成为了数字经济时代的领航者。他的每一步,都走在技术创新的最前沿,推动着区块链技术的发展与应用,给全球经济带来了深远的影响。 从创业初期到现在,孙宇晨始终紧跟时代脉搏,勇敢地探索未知的领域。他对区块链技术的热情源于他对去中心化理念的深刻理解和认同。在区块链技术还处于初期发展阶段时,孙宇晨便看到了它将如何改变世界。区

智慧农业-自动化如何塑造农业的未来

全球人口的增长和气候变化对农业生产的持续影响,传统农业面临非常大的考验。为了保证农业效率、减少资源浪费和应对环境破坏,智能农业(Smart Agriculture)已成为未来农业发展的关键趋势。但在智能农业的诸多技术中,自动化是最关键的推动力量之一。自动化如何改变农业?它又将如何营造农业的未来? 1. 自动化带来的精准农业 自动化控制根据精准控制农业的各个环节,显着提高了农业效率。精准农业

激光SLAM如何动态管理关键帧和地图

0. 简介 个人在想在长期执行的SLAM程序时,当场景发生替换时,激光SLAM如何有效的更新或者替换地图是非常关键的。在看了很多Life-Long的文章后,个人觉得可以按照以下思路去做。这里可以给大家分享一下 <br/> 1. 初始化保存关键帧 首先对应的应该是初始化设置,初始化设置当中会保存关键帧数据,这里的对应的关键帧点云数据会被存放在history_kf_lidar当中,这个数据是和

用python fastapi写一个http接口,使ros2机器人开始slam toolbox建图

如果你想使用Python的FastAPI框架编写一个HTTP接口,以便通过接口启动ROS 2机器人的SLAM Toolbox建图,可以按照以下方式进行: 首先,确保你已经安装了fastapi和uvicorn库。你可以使用以下命令进行安装: pip install fastapi uvicorn 接下来,创建一个Python文件(例如app.py),并将以下代码添加到文件中: import