04_使用决策树对银行贷款进行建模

2023-11-20 21:21

本文主要是介绍04_使用决策树对银行贷款进行建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用决策树对银行贷款进行建模

1、实验描述

  • 使用Python编程,输入为自定义数据集,分别为贷款对象的四个属性,年龄,是否有房,是否有工作,信用情况计算所有可能的特征的信息增益,选择最优的特征值划分数据集,进而递归地构建决策树。其中为了更加直观地呈现决策树,使用Matplotlib编程将决策树可视化。最后,根据训练好的决策树执行分类,判断银行是否贷款给相关用户。

  • 实验时长: 60 分钟

  • 主要步骤:

    • 使用Python选择最优特征递归构建决策树

    • 决策树的可视化

    • 使用决策树执行分类预测

2、实验环境

  • Anaconda 4.3.30

  • Python 3.6.6

  • Numpy 1.13.1

  • Matplotlib 2.2.2

  • scikit-learn 0.18.2

  • graphviz 2.30.1

3、相关技能

  • Python编程

  • Matplotlib编程

  • 决策树构建

  • 决策树可视化

4、相关知识点

  • 决策树的原理

  • 决策树(decision
    tree)是一种基本的分类与回归方法,是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。决策树可以看作一个if-then规则的集合:由决策树的根结点到叶结点的每一条路径构建一条规则;路径上内部结点的特征对应着规则的条件,而叶结点的类对应着规则的结论。

  • 使用决策树预测需要以下过程:收集数据、准备整理数据、分析数据、训练算法构造决策树、测试算法、使用算法。

  • 决策树的构建

  • 特征选择:特征选择在于选取对训练数据具有分类能力的特征,决定用哪个特征来划分特征空间,可以提高决策树学习的效率。通常特征选择的标准是信息增益或信息增益比。信息增益指的是划分数据集之后信息发生的变化,通过经验熵和条件熵,计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即:g(D,A)=H(D)-
    H(D|A)。

  • 决策树的生成和修剪:使用C4.5、ID3、CART等算法,基于最好的属性值划分数据集,递归地构建决策树,直到不能继续下去为止。但这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有那么准确,即出现过拟合现象。针对这一问题,考虑决策树的复杂度,对已生成的决策树进行修剪简化。

  • 决策树可视化

  • 通过Python编程构建的决策树不够清晰直观,可以使用强大的Matplotlib绘制决策树。

  • 使用决策树分类预测

  • 依靠原始数据集构造好的决策树,可以对实际数据进行分类预测。执行数据分类时,需要决策树以及用于构造树的标签向量。然后,程序比较测试数据与决策树上的数值,递归执行该过程直到进入叶子结点,最后将测试数据定义为叶子结点所属的类型,完成对数据的预测。

5、实现效果

  • 贷款类决策树构建结果可视化如下图:

在这里插入图片描述

图 1

6、实验步骤

6.1进入/home/zkpk/pycharm-2017.3.5/bin目录,切换到root用户,输入密码(zkpk)

[zkpk@localhost tgz]$ cd ~/pycharm-2017.3.5/bin
[zkpk@localhost bin]$ su root

在这里插入图片描述

图 2

修改hosts文件,在/etc/hosts文件末添加一行0.0.0.0
account.jetbrains.com,注意account前面有一个空格(按I键,添加以下内容后按Esc键,输入:wq,再按Enter键即可保存退出)。修改完成后使用exit命令退出root权限。

[root@localhost bin]# vi /etc/hosts
0.0.0.0 account.jetbrains.com

在这里插入图片描述

图 3

在/home/zkpk/pycharm-2017.3.5/bin目录下,使用./pycharm.sh命令打开Pycharm,点击open,打开DecisionTree工程,
在工程下创建DCTree.py 并设置Python Interpreter。
在这里插入图片描述

图 4
![在这里插入图片描述](https://img-blog.csdnimg.cn/b4b6cccf92b54364a96e18c2c84c1945.png#pic_center)
图 5

6.2定义数据集,设置四个属性标签为年龄,是否工作,是否有房,信用等级。

def createDataSet():dataSet = [[0, 0, 0, 0, 'no'], #数据集[0, 0, 0, 1, 'no'],[0, 1, 0, 1, 'yes'],[0, 1, 1, 0, 'yes'],[0, 0, 0, 0, 'no'],[1, 0, 0, 0, 'no'],[1, 0, 0, 1, 'no'],[1, 1, 1, 1, 'yes'],[1, 0, 1, 2, 'yes'],[1, 0, 1, 2, 'yes'],[2, 0, 1, 2, 'yes'],[2, 0, 1, 1, 'yes'],[2, 1, 0, 1, 'yes'

这篇关于04_使用决策树对银行贷款进行建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397521

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客