第4章【思考与练习1】叙述Pandas和Matplotlib绘图工具之间的关系。 2012~2020年我国人均可支配收入为[1.47, 1.62, 1.78...]按照要求绘制以下图形:折线图、多子图

本文主要是介绍第4章【思考与练习1】叙述Pandas和Matplotlib绘图工具之间的关系。 2012~2020年我国人均可支配收入为[1.47, 1.62, 1.78...]按照要求绘制以下图形:折线图、多子图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

P70思考与练习1

1.叙述Pandas和Matplotlib绘图工具之间的关系。如何在绘图中综合使用两种工具的绘图函数,达到既快速绘图又可精细化设置图元的目标。

1.pandas封装了Matplotlib的主要绘图功能。pandas基于Series与DataFrame绘图,使用Series与DataFrame封装数据,调Series.plot()或DataFrame.plot()完成绘图。pandas绘图简单直接,若要更细致地控制图标样式,如添加标注、在一幅图中包含多副子图,必须使用Matplotlib提供的基础函数。Matplotlib中使用pyplot的图元设置函数来实现图形的精细化设置,能够对pandas绘出的图形进行精细化设置。
我们可以先将数据封装成Series或DataFrame,通过Pandas快速绘图,最后再通过Matplotlib中的pyplot图元设置函数对图形进一步精细化设置,达到精细化绘图的目的。

 2. 2012~2020年我国人均可支配收入为[1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21](单位:万元)。按照要求绘制以下图形。

1)模仿例4-1和4-3,绘制人均可支配收入折线图。用小矩形标记数据点,黑色虚线,用注解标注最高点,图例标题“Income ”,设置坐标轴标题,最后将图形保存为jpg文件。

2)模仿例4-2,使用多个子图分别绘制人均可支配收入的折线图、箱形图以及柱状图(效果如下图所示)。

【提示】:

(1)本实验准备数据时可使用Series对象或DataFrame对象。

(2)创建3个子图分别使用(2,2,1)、(2,2,2)和(2,1,2)作为参数。

(3)使用plt.subplots_adjust()函数调整子图间距离,以便添加图标题。

 新书第二版要求的画图效果

第(1)题:

共列举以下三种方法

【方法一】:使用Series.plot画图,数据为Series形式

【方法二】:使用DataFrame.plot画图,数据为DataFrame形式

【方法三】:使用plt.plot函数画图(默认kind='line‘,画折线图),数据为列表形式

#方法一:Series.plot
import matplotlib.pyplot as plt
from pandas import Series
Income_data = Series([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'])
Income_data.plot(title = '2012-2020 年人均可支配收入',marker = 's',linestyle = 'dotted',grid = True,label = 'Income',yticks = [0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5],c = 'black')     #label代表图例,c代表线、点的颜色
plt.xlabel('Year')                              #添加x轴标题
plt.ylabel('Income(RMB Ten Thousand)')          #添加y轴标题
plt.legend()                                    #显示图例,若无则不显示
plt.annotate('Largest!',xy = (8,3.21),xytext = (6.1,2.6),arrowprops = dict(arrowstyle = '->',color = 'r'),color = 'r')     #xy为箭头位置坐标,xytext为文字起点位置
plt.show()#方法二:DataFrame.plot
import matplotlib.pyplot as plt
from pandas import DataFrame
#DataFrame1中columns即为图例,index即为横坐标值
Income_data = DataFrame([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'],columns = ['Income'])
Income_data.plot(title = '2012-2020 年人均可支配收入',marker = 's',linestyle = 'dotted',grid = True,yticks = [0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5],c = 'black')     
plt.xlabel('Year')                              
plt.ylabel('Income(RMB Ten Thousand)')          
plt.annotate('Largest!',xy = (8,3.21),xytext = (6.1,2.6),arrowprops = dict(arrowstyle = '->',color = 'r'),color = 'r')     
plt.show()#方法三:plt.plot
import matplotlib.pyplot as plt
Income_data = [1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21]
plt.plot(['2012','2013','2014','2015','2016','2017','2018','2019','2020'],[1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],marker = 's',linestyle = 'dotted',c = 'black',label = 'Income')
plt.title('2012-2020 年人均可支配收入')
plt.yticks([0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5])
plt.xlim(0,8)             #设置x轴刻度范围
plt.xlabel('Year')                              
plt.ylabel('Income(RMB Ten Thousand)')
plt.annotate('Largest!',xy = (8,3.21),xytext = (6.1,2.6),arrowprops = dict(arrowstyle = '->',color = 'r'),color = 'r')     
plt.legend()
plt.grid()                #显示网格线

结果如下:

第(2)题:

共列举以下6种方法

可采用figure.add_subplot()函数或plt.subplot()两种函数创建子图。而数据形式分别为Series、DataFrame与列表三种形式。由此列举6种方法求解。

前三种方法采用figure.add_subplot()函数

【方法一】:采用figure.add_subplot()函数创建子图。使用Series.plot画图,数据为Series形式。

【方法二】:采用figure.add_subplot()函数创建子图。使用DataFrame.plot画图,数据为DataFrame形式。

【方法三】:采用figure.add_subplot()函数创建子图。使用各类画图函数画图(plt.plot()画折线图,plt.boxplot()画箱形图,plt.bar()画柱状图),数据为列表形式。

后三种方法采用plt.subplot()函数

【方法四】:采用plt.subplot()函数创建子图。使用Series.plot绘图,数据为Series形式。

【方法五】:采用plt.subplot()函数创建子图。使用DataFrame.plot画图,数据为DataFrame形式。

【方法六】:采用plt.subplot()函数创建子图。使用各类画图函数画图(plt.plot()画折线图,plt.boxplot()画箱形图,plt.bar()画柱状图),数据为列表形式。

前三种方法(采用figure.add_subplot()函数):

先定义画布大小:fig = plt.figure(figsize = ()) 

再创建子图:fig.add_subplot()或者ax1... = fig.add_subplot()

对于Series与列表类型的数据:可不返回ax=ax1,ax=ax2,ax=ax3....。(也可返回)

对于DataFrame类型的数据:写为ax1(ax2、ax3...)  = fig.add_subplot(),每次画图在画图函数里都要返回ax=ax1,ax=ax2,ax=ax3....。例如DataFrame.plot(...,ax = ax1)等,否则画图出错。

#方法一:采用figure.add_subplot()函数创建子图。使用Series.plot画图,数据为Series形式
import matplotlib.pyplot as plt
from pandas import Series
Income_data =Series([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'])
fig = plt.figure(figsize = (10,6))    #figure创建绘图对象,figsize设置画布尺寸
#将绘图区域分为2行2列4份,在第1份上作图
ax1 = fig.add_subplot(2,2,1)
#绘制折线图
ax1.plot(Income_data)                #采用AxesSubplot绘制折线图 
plt.title('Line chart')
plt.xlabel('Year')
plt.ylabel('Incone')
'''
还可采用Series.plot()函数绘制折线图:
Income_data.plot(title = 'Line chart')                                                     #采用Series.plot画折线图
plt.xticks(range(0,9),['2012','2013','2014','2015','2016','2017','2018','2019','2020'])    #让x轴刻度显示全
plt.xlim(-0.5,8.5)                                                                         #增大x轴刻度范围
plt.xlabel('Year')
plt.ylabel('Income')
'''
#将绘图区域分为2行2列4份,在第2份上作图
ax2 = fig.add_subplot(2,2,2)         #也可去掉"ax2="写为fig.add_subplot(2,2,2)
#绘制箱形图
Income_data.plot(kind = 'box',title = 'Box-whisker plot')
plt.xlabel('2012-2020')
plt.ylabel('Income')
plt.xticks([])
#将绘图区域分为2行1列2份,在第2份作图
ax3 = fig.add_subplot(2,1,2)         #也可去掉"ax3="写为fig.add_subplot(2,1,2)
#绘制柱状图
Income_data.plot(kind = 'bar',label = 'Income')
plt.title('Bar chart')
plt.xlabel('Year')
plt.ylabel('Income')
plt.legend()                         #显示图例
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)#方法二:采用figure.add_subplot()函数创建子图。使用DataFrame.plot画图,数据为DataFrame形式,需返回ax=ax1,ax=ax2,ax=ax3
import matplotlib.pyplot as plt
from pandas import DataFrame
Income_data =DataFrame([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'],columns = ['Income'])
fig = plt.figure(figsize = (10,6))
#画折线图
ax1 = fig.add_subplot(221)       #(2,2,1)可连写(221)
Income_data.plot(title = 'Line chart',legend = False,ax = ax1)                  #返回ax1                       #legend = False去掉图例
plt.xticks(range(0,9),['2012','2013','2014','2015','2016','2017','2018','2019','2020'])     #让x轴刻度显示全
plt.xlim(-0.5,8.5)               #增大x轴刻度范围
plt.xlabel('Year')
plt.ylabel('Income')
#画箱形图
ax2 = fig.add_subplot(222)
Income_data.plot(kind = 'box',title = 'Box-whisker plot',xticks = [],ax = ax2)  #返回ax2
plt.xlabel('2012-2020')
plt.ylabel('Income')
#画柱状图
ax3 = fig.add_subplot(212)
Income_data.plot(kind = 'bar',title = 'Bar chart',ax = ax3)                     #返回ax3
plt.xlabel('Year')
plt.ylabel('Income')
#调间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)
plt.savefig('Income222.jpg',dpi = 400,bbox_inches = 'tight')             #保存导出图像
plt.show()#方法三:采用figure.add_subplot()函数创建子图。使用各类画图函数画图,数据为列表形式
import matplotlib.pyplot as plt
Income_data = [1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21]
fig = plt.figure(figsize = (10,6))
#画折线图
fig.add_subplot(221)    
plt.plot(['2012','2013','2014','2015','2016','2017','2018','2019','2020'],Income_data)        #折线图函数:plt.plot()
plt.title('Line chart')
plt.xlabel('Year')
plt.ylabel('Incone')
#画箱形图
fig.add_subplot(222)
plt.boxplot(Income_data,boxprops = {'color':'#1F77B4'},medianprops = {'color':'green'},whiskerprops={'color':'#1F77B4'})     
#箱形图函数:plt.boxplot()。boxprops设置箱体的属性,whiskerprops设置须的属性,medianprops设置中位数的属性
plt.title('Box-whisker plot')
plt.xlabel('2012-2020')
plt.xticks([])             #不显示坐标轴刻度
plt.ylabel('Income')
#画柱状图
fig.add_subplot(212)
plt.bar(['2012','2013','2014','2015','2016','2017','2018','2019','2020'],Income_data,label = 'Income')   #柱状图函数:plt.bar(x,height)
plt.title('Bar chart')
plt.legend()
plt.xlabel('Year')
plt.xticks(rotation = 90)  #rotation设置刻度旋转角度值
plt.ylabel('Income')    
#调间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)
plt.savefig('Income2.jpg',dpi = 400,bbox_inches = 'tight')
plt.show()

后三种方法(采用plt.subplot()函数):

思路同上三种方法。

先定义画布大小:plt.figure(figsize = ()) 

再创建子图:plt.subplot()

对于Series与列表类型的数据:可不返回ax=ax1,ax=ax2,ax=ax3....。(也可返回)

对于DataFrame类型的数据:写为ax1(ax2、ax3...)  = plt.subplot(),每次画图在画图函数里都要返回ax=ax1,ax=ax2,ax=ax3....。否则画图出错。如下:

#方法四:采用plt.subplot()函数创建子图。使用Series.plot绘图,数据为Series形式
import matplotlib.pyplot as plt
from pandas import Series
Income_data = Series([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'])
plt.figure(figsize = (10,6))
#画折线图
plt.subplot(221) 
Income_data.plot(title = 'Line chart')                                                  #用Series.plot画折线图 
plt.xticks(range(0,9),['2012','2013','2014','2015','2016','2017','2018','2019','2020'])    #让x轴刻度显示全
plt.xlim(-0.5,8.5)                                                                         #增大x轴刻度范围
plt.xlabel('Year')
plt.ylabel('Income')
#画箱形图
plt.subplot(222)
Income_data.plot(kind = 'box',title = 'Box-whisker plot')
plt.xlabel('2012-2020')
plt.ylabel('Income')
plt.xticks([])
#画柱状图
plt.subplot(212)
Income_data.plot(kind = 'bar',label = 'Income')
plt.title('Bar chart')
plt.xlabel('Year')
plt.ylabel('Income')
plt.legend()    
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)#方法五:采用plt.subplot()函数创建子图。使用DataFrame.plot画图,数据为DataFrame形式,需返回ax=ax1,ax=ax2,ax=ax3
import matplotlib.pyplot as plt
from pandas import DataFrame
Income_data =DataFrame([1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21],index = ['2012','2013','2014','2015','2016','2017','2018','2019','2020'],columns = ['Income'])
plt.figure(figsize = (8,6))
#画折线图
ax1 = plt.subplot(221)
Income_data.plot(title = 'Line chart',legend = False,ax = ax1)                             #legend = False去掉图例
plt.xticks(range(0,9),['2012','2013','2014','2015','2016','2017','2018','2019','2020'])     #让x轴刻度显示全
plt.xlim(-0.5,8.5)               #增大x轴刻度范围
plt.xlabel('Year')
plt.ylabel('Income')
#画箱形图
ax2 = plt.subplot(222)
Income_data.plot(kind = 'box',title = 'Box-whisker plot',xticks = [],ax = ax2)
plt.xlabel('2012-2020')
plt.ylabel('Income')
#画柱状图
ax3 = plt.subplot(212)
Income_data.plot(kind = 'bar',title = 'Bar chart',ax = ax3)
plt.xlabel('Year')
plt.ylabel('Income')
#调间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)#方法六:采用plt.subplot()函数创建子图。使用各类画图函数画图,数据为列表形式
import matplotlib.pyplot as plt
Income_data = [1.47, 1.62, 1.78, 1.94, 2.38, 2.60,2.82,3.07,3.21]
plt.figure(figsize = (10,6))
#画折线图
plt.subplot(221)
plt.plot(['2012','2013','2014','2015','2016','2017','2018','2019','2020'],Income_data)                  #折线图函数:plt.plot()
plt.title('Line chart')
plt.xlabel('Year')
plt.ylabel('Incone')
#画箱形图
plt.subplot(222)
plt.boxplot(Income_data,boxprops = {'color':'#1F77B4'},medianprops = {'color':'green'},whiskerprops={'color':'#1F77B4'})     #箱形图函数:plt.boxplot()
plt.title('Box-whisker plot')
plt.xlabel('2012-2020')
plt.xticks([])               #不显示坐标轴刻度,也可写为plt.xticks(())
plt.ylabel('Income')
#画柱状图
plt.subplot(212)
plt.bar(['2012','2013','2014','2015','2016','2017','2018','2019','2020'],Income_data,label = 'Income')   #柱状图函数:plt.bar(x,height)
plt.title('Bar chart')
plt.legend()
plt.xlabel('Year')
plt.xticks(rotation = 90)    #rotation设置刻度旋转角度值
plt.ylabel('Income')    
#调间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)

六种方法运行结果皆如下:

 【老书第一版此题】

宋晖《数据科学技术与应用》第一版老书中,该题目为:

2012~2017年我国人均可支配收入为[1.47, 1.62, 1.78, 1.94, 2.38, 2.60](单位:万元)。

题目要求图形如下:

 

老书第一版要求的画图效果

第(1)题:

同样有类似的三种方法:

#方法一:采用Series.plot绘图。
import matplotlib.pyplot as plt
from pandas import Series
plt.figure()
Income_data = Series([1.47,1.62,1.78,1.94,2.38,2.60],index = ['2012','2013','2014','2015','2016','2017'])
Income_data.plot(title = 'Income chart',marker = 's',color = 'black',linestyle = 'dashed',grid = True,yticks = [0.0,0.5,1.0,1.5,2.0,2.5,3.0],use_index = True)   #若不加use_index = True,则x轴刻度范围会多一些
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income(RMB Ten Thousand)',fontsize = 12)
plt.legend(('Income',))     #添加逗号让图例文本显示全
plt.annotate('Largest!',color = 'red',xy = (5,2.60),xytext = (3,2.55),arrowprops = dict(arrowstyle = '->',color = 'red'))
plt.savefig('Income chart.jpg',dpi = 400,bbox_inches = 'tight')   #保存为jpg图片
plt.show()#方法二:采用DataFrame.plot绘图,用columns做标签,无需设label。同时x,y轴刻度采用函数取得
import matplotlib.pyplot as plt
import numpy as np
from pandas import DataFrame
%matplotlib inline
Income = [1.47,1.62,1.78,1.94,2.38,2.60]
data = DataFrame({'Income':Income},index = np.arange(2012,2018))#此处需要注意index中数的坐标,(标注释时xy中坐标改变)
data.plot(title = 'Income chart',linestyle = 'dashed',marker = 's',color = 'k',grid = True,yticks = np.arange(0.0,3.5,0.5))  #此处可以显示或者不显示图例,加legend  = True/False
#精细设置图元
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income(RMB Ten Thousand)',fontsize = 12)
plt.annotate('Largest!',color = 'r',xy = (2017,2.60),xytext = (2015,2.55),arrowprops = dict(arrowstyle = '->',color = 'r'))    
plt.savefig('Income chart.jpg',dpi = 400,bbox_inches = 'tight')
plt.show()#方法三:采用plt.plot画图,设置坐标轴与标题的字体
import matplotlib.pyplot as plt
import numpy as np
Income = [1.47,1.62,1.78,1.94,2.38,2.60]
plt.plot(Income,linestyle = 'dashed',color = 'k',marker = 's',label = 'Income')     #注:里面无grid,需要直接设置
plt.xticks(range(0,6),['2012','2013','2014','2015','2016','2017'])                  #将x轴刻度映射为字符串
plt.yticks(np.arange(0,3.5,0.5))
plt.title('Income chart',fontdict = {'family':'Times New Roman','size':12})
plt.xlabel('Year',fontdict = {'family':'Times New Roman','size':12})
plt.ylabel('Income(RMB Ten Thousand)',fontdict = {'family':'Times New Roman','size':12})
plt.xlim(0,5)
plt.legend(loc = 1)       #loc = 1表示图例位于第一象限。#此处亦可写plt.legend(('Income',),loc = 'upper right'),不用label #亦可写plt.legend()
plt.grid()
plt.annotate('Largest!',xy = (5,2.60),xytext = (3,2.55),arrowprops = dict(arrowstyle = '->',color = 'r'),color = 'red')   
plt.savefig('Income chart.jpg',dpi = 400,bbox_inches = 'tight')
plt.show()

结果如下:

 第(2)题:

同样列举以下6种方法:
【方法一】:fig.add_subplot绘图,Series.plot()绘图,数据为series形式
【方法二】:fig.add_subplot绘图,DataFrame.plot()绘图,数据为DataFrame形式
【方法三】:fig.add_subplot()函数,运用各类画图函数画图,数据为列表形式
【方法四】:采用subplot()函数绘图。Series.plot()函数,数据为Series形式
【方法五】:采用subplot()函数绘图。DataFrame.plot()函数,数据为DataFrame形式
【方法六】:采用subplot()函数,运用各类画图函数画图,数据为列表形式

六种方法如下:

#方法一:fig.add_subplot绘图,Series.plot()绘图,数据为series形式
import matplotlib.pyplot as plt
from pandas import Series
data = Series([1.47,1.62,1.78,1.94,2.38,2.60],index = ['2012','2013','2014','2015','2016','2017'])
#定义图形大小
fig = plt.figure(figsize = (6,6))
#绘制折线图
ax1 = fig.add_subplot(2,2,1)
ax1.plot(data)
plt.title('line chart')
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制箱形图
ax2 = fig.add_subplot(2,2,2)
data.plot(kind = 'box',xticks = [])     #xticks = []表示无刻度
plt.title('box-whisker plot')
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制柱状图
ax3 = fig.add_subplot(2,1,2)
data.plot(kind = 'bar')
plt.legend(('Income',))
plt.title('bar chart')
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)       #wspace、hspace分别表示子图之间左右、上下的间距
plt.savefig('Image2.jpg',dpi = 400,bbox_inches = 'tight')
plt.show()#方法二:fig.add_subplot绘图,DataFrame.plot()绘图,数据为DataFrame形式
import matplotlib.pyplot as plt
from pandas import DataFrame
data1 = [1.47,1.62,1.78,1.94,2.38,2.60]
Incomedata = DataFrame({'Income':data1},index = ['2012','2013','2014','2015','2016','2017'])
fig = plt.figure(figsize = (6,6))
#绘制折线图
ax1 = fig.add_subplot(2,2,1)
Incomedata.plot(title = 'line chart',legend = False,ax = ax1)   #legend = False去掉标注 。
#另外重要发现:不加ax=ax1画图出错。而Series.plot未发现出错
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.xlim(-0.5,5.5)      #扩大x刻度范围
plt.ylabel('Income',fontsize = 12)
#绘制箱线图
ax2 = fig.add_subplot(2,2,2)
Incomedata.plot(kind = 'box',title = 'box-whisker plot',ax = ax2)
plt.xticks(())
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制柱状图
ax3 = fig.add_subplot(2,1,2)
Incomedata.plot(kind = 'bar',title = 'bar chart',ax = ax3)
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)
plt.show()#方法三:运用各类画图函数画图:采用fig.add_subplot()函数,数据为列表形式
import matplotlib.pyplot as plt
data = [1.47,1.62,1.78,1.94,2.38,2.60]
fig = plt.figure(figsize = (6,6))
#折线图
ax1 = fig.add_subplot(2,2,1)
plt.plot(data)
plt.title('line chart')
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#箱型图
ax2 = fig.add_subplot(2,2,2)
plt.boxplot(data,boxprops = {'color':'#1F77B4'},medianprops = {'color':'green'},whiskerprops={'color':'#1F77B4'})    
#boxprops设置箱体的属性,whiskerprops设置须的属性,medianprops设置中位数的属性
plt.xticks(())   #双括号不显示坐标轴刻度
plt.title('box-whisker plot')
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#柱形图
ax3 = fig.add_subplot(2,1,2)
plt.bar(['2012','2013','2014','2015','2016','2017'],[1.47,1.62,1.78,1.94,2.38,2.60])   #bar(x,height)
plt.legend(('Income',))
plt.xticks(rotation = 90)    #x刻度倾斜90度
plt.title('bar chart')
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)   #方法四:采用subplot()函数绘图。Series.plot()函数,数据为Series形式
import matplotlib.pyplot as plt
from pandas import Series
plt.figure(figsize = (6,6))
#绘制折线图
plt.subplot(2,2,1)
data = Series([1.47,1.62,1.78,1.94,2.38,2.60],index = ['2012','2013','2014','2015','2016','2017'])
plt.plot(data)
plt.title('line chart')
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制箱型图
plt.subplot(2,2,2)
data.plot(title = 'box-whisker plot',kind = 'box',xticks = [])
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制柱形图
plt.subplot(2,1,2)
data.plot(kind = 'bar')
plt.legend(('Income',))
plt.title('bar chart')
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)   
plt.show()#方法五:采用subplot()函数绘图。DataFrame.plot()函数,数据为DataFrame形式
import matplotlib.pyplot as plt
from pandas import DataFrame
data1 = [1.47,1.62,1.78,1.94,2.38,2.60]
Incomedata = DataFrame({'Income':data1},index = ['2012','2013','2014','2015','2016','2017'])
plt.figure(figsize = (6,6))
#折线图
ax1 = plt.subplot(221)    #将第一个画板划分为2行1列组成的区块,并获取到第一块区域
Incomedata.plot(title = 'line chart',legend = False,ax = ax1)  #若无ax = ax1,则画不出图
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.xlim(-0.5,5.5)      #扩大x刻度范围
plt.ylabel('Income',fontsize = 12)
#绘制箱线图
ax2 = plt.subplot(222)
Incomedata.plot(kind = 'box',title = 'box-whisker plot',ax = ax2)
plt.xticks(())
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#绘制柱状图
ax3 = plt.subplot(212)
Incomedata.plot(kind = 'bar',title = 'bar chart',ax = ax3)
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间间距
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)#方法六:运用各类画图函数画图:采用subplot()函数,数据为列表形式
import matplotlib.pyplot as plt
data = [1.47,1.62,1.78,1.94,2.38,2.60]
fig = plt.figure(figsize = (6,6))
#折线图
plt.subplot(2,2,1)
plt.plot(data)
plt.title('line chart')
plt.xticks(range(0,6,2),['2012','2014','2016'])
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#箱型图
plt.subplot(2,2,2)
plt.boxplot(data,boxprops = {'color':'#1F77B4'},medianprops = {'color':'green'},whiskerprops={'color':'#1F77B4'})    
#boxprops设置箱体的属性,whiskerprops设置须的属性,medianprops设置中位数的属性
plt.xticks(())   #双括号不显示坐标轴刻度
plt.title('box-whisker plot')
plt.xlabel('2012—2017',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#柱形图
plt.subplot(2,1,2)
plt.bar(['2012','2013','2014','2015','2016','2017'],[1.47,1.62,1.78,1.94,2.38,2.60])   #bar(x,height)
plt.legend(('Income',))
plt.xticks(rotation = 90)    #x刻度倾斜90度
plt.title('bar chart')
plt.xlabel('Year',fontsize = 12)
plt.ylabel('Income',fontsize = 12)
#调整子图间距离
plt.subplots_adjust(wspace = 0.5,hspace = 0.5)   

运行结果如下:

这篇关于第4章【思考与练习1】叙述Pandas和Matplotlib绘图工具之间的关系。 2012~2020年我国人均可支配收入为[1.47, 1.62, 1.78...]按照要求绘制以下图形:折线图、多子图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/396900

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

使用Python制作一个PDF批量加密工具

《使用Python制作一个PDF批量加密工具》PDF批量加密‌是一种保护PDF文件安全性的方法,通过为多个PDF文件设置相同的密码,防止未经授权的用户访问这些文件,下面我们来看看如何使用Python制... 目录1.简介2.运行效果3.相关源码1.简介一个python写的PDF批量加密工具。PDF批量加密

使用Java编写一个文件批量重命名工具

《使用Java编写一个文件批量重命名工具》这篇文章主要为大家详细介绍了如何使用Java编写一个文件批量重命名工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录背景处理1. 文件夹检查与遍历2. 批量重命名3. 输出配置代码片段完整代码背景在开发移动应用时,UI设计通常会提供不

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,