【Google Code Jam 2009 round2 problem D】Watering Plants (两圆交点求法详解)

本文主要是介绍【Google Code Jam 2009 round2 problem D】Watering Plants (两圆交点求法详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Google Code Jam 2009 round2 problem D】Watering Plants 

你在温室种植了N株植物。为了给这些植物浇水,你购买了2台自动浇水的机器。每株植物i的圆心为(Xi,Yi),半径为Ri。任意两个圆都不相交或相切。每台机器都可以给某个完全包含于半径为r的圆形区域内的植物浇水。求最小的r使得存在一种方案能给所有植物浇水。

限制条件

1<=Xi<=1000

1<=Yi<=1000

1<=Ri<=100

Small

1<=N<=3

Large

1<=N<=40

输入

2
3
20 10 2
20 20 2
40 10 3
3
20 10 3
30 10 3
40 10 3

输出

Case #1: 7.000000
Case #2: 8.000000


分析:

0)该题在《挑战程序竞赛第二版》【1】3.7.4中有所介绍,给出了求解算法,误差分析和临界情况的示例,本文整理了其中的思路并添加了产生临界情况的详细分析和求两圆交点坐标公式的推导

1)若对半径r存在一种浇水方案,则对任意R>r,对半径R肯定也存在一种浇水方案。因此容易想到可以使用二分搜索的方法在解空间搜索满足条件的最小值。

2)现在的问题在于能否找到一种高效的判别算法C(r)判断对半径r是否存在一种浇水方案。当两个浇水器的半径确定时,可以放置的位置有无数种情况,但是我们只需要判断两浇水器处于临界位置时是否存在浇水方案(即2个半径为r的圆是否刚好能覆盖所有植物)。当两个圆半径最小时,由于植物数N>=3,两个圆覆盖的植物数N1,N2>=1,若一个圆覆盖的植物数为1,则它半径最小时必定正好与它覆盖的植物同心。若一个圆覆盖的植物数Ni>=2,则它一定至少与两个植物相切。因此两个圆的圆心存在两种临界位置。求出所有临界位置的圆的圆心(这样的圆共有O(n^2)个)。判断这些临界位置的圆中是否存在两个圆可以覆盖所有的植物。因此存在复杂度为O(n^2)的判断算法

3)求解和两植物相切的浇水器的圆心

设植物圆1的圆心为O1(X1,Y1),半径为r1,植物圆2的圆心为O2(X2,Y2),半径为r2,浇水器半径为R

由于浇水器与植物1,2都相切,浇水器圆心在以O1为圆心,R1=R-r1为半径的圆和以O2为圆心,R2=R-r2为半径的圆的交点处。因此我们需要求解两圆交点的坐标。

设存在两圆X,Y

圆X 圆心A(x,y),半径R1, 圆Y的圆心B(a,b),半径R2,两圆交点为C、D,CD与AB的交点为E,过C作平行于Y轴直线,过E作平行于X轴直线,两者相较于F,过B作平行于Y轴直线,过A作平行X轴直线,两者相交于G,设E坐标为(x0,y0),FE=x4,CF=y4,如下图【2】所示



令dx=a-x dy=b-y  a=AB=sqrt((a-b)^2+(b-y)^2)

CE^2=AC^2-AE^2=BC^2-BE^2=BC^2-(AB-AE)^2

整理得AE=(R1^2-R2^2+a^2)/(2a)

易得x0=dx*AE/AB

令b=AE/AB=(R1^2-R2^2+a^2)/(2a^2)

则x0=dx*b

同理y0=dy*b

易得三角形CFE与三角形AGB相似,因此

FE/CE=BG/AB

CE^2=AC^2-AE^2=R1^2-(b*a)^2

FE=BG/AB*CE=dy/a*sqrt(R1^2-(b*a)^2)=dy*sqrt(R1^2/a^2-b^2)

令d=sqrt(R1^2/a^2-b^2)

则x4=FE=dy*d

同理y4=CF=dy*d

于是

C点坐标为(x0-x4,y0+y4)

D点坐标为(x0+x4,y0-y4)

Q.E.D 

4)代码可以参考【1】中的实现

参考资料

【1】《挑战程序设计竞赛》作者秋叶拓哉 / 岩田阳一/北川宜稔 

【2】图片来自于《两圆相交求交点算法证明》 

http://wenku.baidu.com/link?url=hlnh_qEKfbTg1tEcLLHeLUdhfL_5px9sEj2aLPSmVSjuqdwNIAaM46iSzWX-L3srkdY1LnNJBsUJCwQyZklh3cPasuA1TLLOsmdL2D6GEkm

这篇关于【Google Code Jam 2009 round2 problem D】Watering Plants (两圆交点求法详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/396823

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J