论文笔记:The Impact of AI on Developer Productivity:Evidence from GitHub Copilot

本文主要是介绍论文笔记:The Impact of AI on Developer Productivity:Evidence from GitHub Copilot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 abstract 

  • 本文介绍了一项对GitHub Copilot(一种人工智能编程助手)的控制实验结果。
  • 研究人员招募了软件开发人员,要求他们尽可能快地用JavaScript实现一个HTTP服务器。实验组可以访问人工智能编程助手,比对照组完成任务的速度快55.8%。
  • 观察到的异质性效应表明,人工智能编程助手有望帮助人们过渡到软件开发职业。

1 实验设计 

  • 计算了两个指标作为衡量每个组的表现:任务成功率和任务完成时间。
    • 任务成功率是指一个组中成功完成任务的参与者所占的百分比。
    • 任务完成时间是从任务开始到结束所需的时间
  • 在参与者完成任务后,研究者向他们发送了退出调查的链接。
    • 询问了实验组他们在执行任务时发现GitHub Copilot有多有帮助,以及他们估计与不使用GitHub Copilot相比,他们完成任务的速度提高了多少。
    • 还要求对照组估计如果他们使用了GitHub Copilot,他们会经历多大的速度提升,这是在向他们展示了一分钟的演示视频之后

2 实验对象

  • 95名开发者被随机分配到对照组和实验组,实验组45人,对照组50人。实验组和对照组各有35名开发者完成了任务和调查
  • 大多数参与者的年龄在25-34岁之间,来自印度和巴基斯坦。
    • 这组参与者的特点是相对较低的收入(与美国标准相比,年中位收入在10,000至19,000美元之间)但教育水平较高(大多数人拥有4年制学位及以上)。
    • 这个组别的平均编程经验为6年,并且平均报告在一个工作日中花费9小时进行编程。

3 实验结果

实验组——使用copilot

对照组——不适用copilot

3.1 完成时间

  • 实验组的平均完成时间为71.17分钟,对照组为160.89分钟。
    • 这代表了55.8%的完成时间缩短。t检验的p值为0.0017,改善的95%置信区间在[21%, 89%]之间。
  • 有四个异常值的完成时间超过300分钟。
    • 所有异常值都在对照组,但即使去掉这些异常值,我们的结果依然稳健。
  • 这一结果表明,在我们的实验人群中,Copilot显著提高了平均生产力。

3.2 完成时间在不同维度上是否有差异

  • 然后,论文调查这种效应在不同维度(包括经验、就业状况、收入、教育和软件语言偏好)上是否存在异质性。
    • 应用Horvitz-Thomson转换,然后对观测到的转换后结果进行回归分析。
  • 表1中的估计结果报告了这次回归的系数。
    • 结果显示,经验较少的开发者(职业编程年数)、编码负载较重的开发者(每天编程时间)、以及年龄较大的开发者(年龄在25至44岁之间的开发者)从Copilot中获益更多。

3.3 受试对象的体验

  • 进行了一项包含两个问题的退出调查,以了解受试对象的体验。
    • 首先,要求他们估计Copilot在完成任务方面提供的生产力增益或损失(以百分比表示)。
    • 虽然对照组在执行任务期间没有接触到Copilot,但在回答这个问题之前,他们观看了教程视频,因此了解了Copilot的功能。
  • 图7展示了对照组和实验组自我报告的生产力增益估计的分布。
    • 平均而言,实验组和对照组的参与者估计生产力增加了35%,与他们实际显示的55.8%的增幅相比,这是一种低估。

 

3.4 支付意愿

  • 在第二个问题中,参与者被问到他们愿意为获取GitHub Copilot发布通知的最高月价格是多少。
  • 这个问题的目的是了解开发者支付Copilot的意愿,因为这个问题的答案提供了开发者支付意愿的上限。
    • 图8展示了对照组和实验组分开的无关价格分布。
      • 实验组的平均无关价格为每月27.25美元,对照组的平均无关价格为每月16.91美元。
      • 这种差异在95%的水平上具有统计学意义。
      • 这一结果间接证明了实验组在任务中受益于Copilot,因为他们的支付意愿显著高于对照组。

这篇关于论文笔记:The Impact of AI on Developer Productivity:Evidence from GitHub Copilot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394975

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti