pytorch DistributedDataParallel 分布式训练踩坑记录

2023-11-11 23:52

本文主要是介绍pytorch DistributedDataParallel 分布式训练踩坑记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、几个比较常见的概念:
    • 二、踩坑记录
      • 2.1 dist.init_process_group初始化
      • 2.2 spawn启动(rank怎么来的)
      • 2.3 loss backward
      • 2.4 model cuda设置
      • 2.5 数据加载

一、几个比较常见的概念:

  • rank: 多机多卡时代表某一台机器,单机多卡时代表某一块GPU
  • world_size: 多机多卡时代表有几台机器,单机多卡时代表有几块GPU
    world_size = torch.cuda.device_count()
    
  • local_rank: 多机多卡时代表某一块GPU, 单机多卡时代表某一块GPU
    单机多卡的情况要比多机多卡的情况常见的多。
  • DP:适用于单机多卡(=多进程)训练。算是旧版本的DDP
  • DDP:适用于单机多卡训练、多机多卡。

二、踩坑记录

2.1 dist.init_process_group初始化

这一步就是设定一个组,这个组里面设定你有几个进程(world_size),现在是卡几(rank)。让pycharm知道你要跑几个进程,包装在组内,进行通讯这样模型参数会自己同步,不需要额外操作了。

import os
import torch.distributed as distdef ddp_setup(rank,world_size):os.environ['MASTER_ADDR'] = 'localhost' #rank0 对应的地址os.environ['MASTER_PORT'] = '6666' #任何空闲的端口dist.init_process_group(backend='nccl',  #nccl Gloo #nvidia显卡的选择ncclworld_size=world_size, init_method='env://',rank=rank) #初始化默认的分布进程组dist.barrier() #等到每块GPU运行到这再继续往下走

2.2 spawn启动(rank怎么来的)

rank是自动分配的。怎么分配呢?这里用的是spawn也就一行代码。

import torch.multiprocessing as mp
def main (rank:int,world_size:int,args):pass#训练代码 主函数mp.spawn(main,args=(args.world_size,args), nprocs=args.world_size)

注意,调用spawn的时候,没有输入main的其中一个参数rank,rank由代码自动分配。将代码复制两份在两张卡上同时跑,你可以print(rank),会发现输出 0 1。两份代码并行跑。

另外,nprocs=args.world_size。如果不这么写,代码会卡死在这,既不报错,也不停止。

2.3 loss backward

one of the variables needed for gradient computation has been modified by an inplace operationRuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [2048]] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

经过调试发现,当使用nn.DataParallel并行训练或者单卡训练均可正常运行;另外如果将两次模型调用集成到model中,即通过out1, out2 = model(input0, input1) 的方式在分布式训练下也不会报错。

在分布式训练中,如果对同一模型进行多次调用则会触发以上报错,即nn.parallel.DistributedDataParallel方法封装的模型,forword()函数和backward()函数必须交替执行,如果执行多个(次)forward()然后执行一次backward()则会报错。

解决此问题可以聚焦到nn.parallel.DistributedDataParallel接口上,通过查询PyTorch官方文档发现此接口下的两个参数:

  • find_unused_parameters: 如果模型的输出有不需要进行反向传播的,此参数需要设置为True;若你的代码运行后卡住不动,基本上就是该参数的问题。
  • broadcast_buffers: 该参数默认为True,设置为True时,在模型执行forward之前,gpu0会把buffer中的参数值全部覆盖到别的gpu上。
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], broadcast_buffers=False, find_unused_parameters=True)

2.4 model cuda设置

RuntimeError: NCCL error in: ../torch/lib/c10d/ProcessGroupNCCL.cpp:859, invalid usage, NCCL version 21.1.1
ncclInvalidUsage: This usually reflects invalid usage of NCCL library (such as too many async ops, too many collectives at once, mixing streams in a group, etc).

*这是因为model和local_rank所指定device不一致引起的错误。

model.cuda(args.local_rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],broadcast_buffers=False,find_unused_parameters=True)

2.5 数据加载

使用distributed加载数据集,需要使用DistributedSampler自动为每个gpu分配数据,但需要注意的是sampler和shuffle=True不能并存。

train_sampler = DistributedSampler(trainset)
train_loader = torch.utils.data.DataLoader(trainset,batch_size=args.train_batch_size,num_workers=args.train_workers,sampler=train_sampler)

这篇关于pytorch DistributedDataParallel 分布式训练踩坑记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393687

相关文章

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Redis分布式锁中Redission底层实现方式

《Redis分布式锁中Redission底层实现方式》Redission基于Redis原子操作和Lua脚本实现分布式锁,通过SETNX命令、看门狗续期、可重入机制及异常处理,确保锁的可靠性和一致性,是... 目录Redis分布式锁中Redission底层实现一、Redission分布式锁的基本使用二、Red

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr