C++ RBTree 理论

2023-11-11 23:44
文章标签 c++ 理论 rbtree

本文主要是介绍C++ RBTree 理论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

这个性质可以总结为

红黑树的最短最长路径

红黑树的路径范围

code

结构

搞颜色

插入

插入逻辑

新插入节点

思考:2. 检测新节点插入后,红黑树的性质是否造到破坏?

解决方法

变色

旋转+变色

第三种情况,如果根节点上面还有节点


这个性质可以总结为

1.每个节点不是红色就是黑色

2.根节点是黑色的

3.不能有两个连续的红色节点  ,即可以出现 红黑  黑黑 不能出现红红

4.每条路径上的黑色机节点数量不一样

至于性质5:每个叶子结点都是黑色的,这里的叶子节点并不是真的叶子节点,而是NIL节点,即空节点。如图(a):

NIL节点有什么作用?如图(a-2),有多少条路径:

正确答案是有7条。路径路径的判断规则是:从根节点到NULL。

如果我们把NIL节点标记出来就好找路径了:

再比如,图(a-3)是否是红黑树:

大致一看好像是,但是把NIL节点标出来之后:

 路径(b)只有两个黑色节点,不满足红黑树的性质,不是红黑树。

红黑树的最短最长路径

那么红黑树的最短路径是什么样子的,应该是全黑的最短:

 那最长的路径呢,应该是一黑一红间隔排列的最长:

根据图(a-1)我们可以看出,最长的路径是最短的路径的2倍。

ps

一个红黑树不一定有最长路径,也不一定有最短路径。

如图(a-2),有最短路径,没有最长路径:

红黑树的路径范围

而知道了最短路径,最长路径,剩下的路径都在最短路径,最长路径范围内,可以写为

                             [n,2*n]

code

结构

template<class K,class V>struct	RBTreeNode
{RBTreeNode<K,V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* parent;pair<K, V>;Color _col;//初始话列表RBTreeNode(const pair<K, V>kv):_left(nullptr),_right(nullptr), _parent(nullptr), pair<K, V>,_col(RED){}
};

搞颜色

enum Color
{RED,BALACK
};

template<class  K,class V>class RBTree{typedef RBTreenode<k,v> Node;public:private:Node* _root = nullptr;};

插入

插入逻辑

如果节点为空,就给黑色。如果节点不为空,就插入值。

这个值如果比根节点小,就往左边插入,否则就往右边插入。

bool Insert(const pair<K, v>& kv){if (_root == nullptr){_root = new(kv);_root->_col = BALACK;return true;}//初始化父亲节点和根节点Node* parent = nullptr;Node* cur = _root;while (cur){//key值大,往右走if (cur->kv.first < kv.first){cur = cur->right;}//key值小,往左走else if (cur->kv.first > kv.first){cur = -cur->left;}//否则key值和当前节点相等,不插入else{return false;}}//找到了返回true1return true;	 }

新插入节点

思考:2. 检测新节点插入后,红黑树的性质是否造到破坏?

如图(b-1),现在要插入一个节点,那么是插入一个黑色节点还是红色节点呢?

如果插入黑色节点,那么该路径就会多一个黑色节点,根据红黑树特性,其他路径都要补一棵黑色节点,

如果插入红色节点,则只会影响父节点

(即

1.如果父节点也会红节点。两个红节点不能紧挨,需调整

2.如果父亲节点是黑色,则不需调整,直接插入。)。

我们看一下怎么调整,如图(b-2),新插入了一个红色节点7:

解决方法

能变色先变色,变色完之后还不行再旋转

变色

如图(b-3),先把父节点8变黑:

这个时候该路径就多了一个黑色节点,再变图(b-4)把6节点变红:

这个时候该路径又少了个黑色节点,再变图(b-5) 把5节点变黑:

旋转+变色

第二种情况,例如图(b-6):如果还是把父节点变为黑色,把6节点变为红色,那么其他路径就会多一个黑色节点。

而该路径又没有其他节点可以再变黑色来平衡这种状态,所以靠变色解决不了这个问题。

这个时候就要旋转了。

先右旋为图(c-1):

再左旋为图(c-2):

然后再变色为图(c-4):

第三种情况,如果根节点上面还有节点

如图(d-0),新插入了一个节点cur:

cur为红色节点,那就需要调整。

把p节点变为黑色节点,那么为了u节点也要变为黑色节点,那么此时就要把g节点变为红色节点。也就是图(d-1)

为什么要把g节点变为红色节点呢?

假设g节点不变为红色也就是图(d-3):

由图(d-1)变为图(d-3)我们发现每条路径凭空多了1个黑色节点。

g节点上面还有节点,那么多了个黑色节点,就会影响上面的路径,所以需要把g节点变红来平衡一下。

如图(d-1):

这个时候万一g节点的父节点是红色节点,如图(d-4):
两个红色节点不能连续,还要调整,如果g节点的父亲节点为黑色,如图(d-5),那就不需要再调整:

这篇关于C++ RBTree 理论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393636

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现