【电路笔记】-节点电压分析和网状电流分析

2023-11-11 22:36

本文主要是介绍【电路笔记】-节点电压分析和网状电流分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节点电压分析和网状电流分析

文章目录

  • 节点电压分析和网状电流分析
    • 1、节点电压分析
      • 1.1 概述
      • 1.2 示例
    • 2、网格电流分析
      • 2.1 概述
      • 2.2 示例
    • 3、总结

正如我们在上一篇介绍电路分析基本定律的文章中所看到的,基尔霍夫电路定律 (KCL) 是计算任何电路中未知电压和电流的强大而高效的工具。 然而,基尔霍夫电路定律有时会带来重复性的不便,并且并不是分析更复杂电路的最快方法。

有两种基于基尔霍夫电路定律的方法可以简化并提高电路分析的效率:节点电压分析和网格电流分析。

我们在本文中分别分两节介绍这两种方法。 在每个部分中,都给出了一个真实的例子来说明如何进行这些分析。

1、节点电压分析

1.1 概述

节点电压分析 (NVA) 基于基尔霍夫电流定律,用于确定电路节点处的未知电压。 它由一系列要遵循的步骤组成,简要列出如下:

  • 1)标记电路的基本节点,基本节点由三个或更多分支之间的连接点组成。
  • 2)选择其中一个节点作为电路的参考。 大多数情况下,它是底部节点。
  • 3)将支路中的电流表示为电压的函数。
  • 4)在参考节点以外的每个节点写出基尔霍夫电流定律。

1.2 示例

假设有图1中所示的以下电子电路,我们将对其执行节点电压分析。 对于数值应用,我们取 S 1 = 10 V S_1=10V S1=10V S 2 = 2 A S_2=2A S2=2A R 1 = 1 Ω R_1=1\Omega R1= R 2 = 5 Ω R_2=5\Omega R2= R 3 = 2 Ω R_3=2\Omega R3= R 4 = 10 Ω R_4=10\Omega R4=10Ω

在这里插入图片描述

图1:带有标记节点、电压和电流的电路示例

在该电路中,我们已经完成了步骤 1 和 2,Node3 已被选为电路的参考(地),并用接地符号表示。

根据步骤 3,我们可以将每个电流 I 1 I_1 I1 I 2 I_2 I2、…、 I 5 I_5 I5 写为 V 12 V_{12} V12 V 13 V_{13} V13 的函数,通过将欧姆定律应用于每个分支来计算电流:

  • I 1 = ( 10 − V 13 ) / R 1 I_1=(10-V_{13})/R_1 I1=(10V13)/R1
  • I 2 = V 13 / R 2 I_2=V_{13}/R_2 I2=V13/R2
  • I 3 = ( V 13 − V 23 ) / R 3 I_3=(V_{13}-V_{23})/R_3 I3=(V13V23)/R3
  • I 4 = V 23 / R 4 I_4=V_{23}/R_4 I4=V23/R4
  • I 5 = − S 2 = − 2 A I_5=-S_2=-2A I5=S2=2A

根据步骤4,我们在Node1和Node2处写出基尔霍夫电流定律:

  • Node1: I 1 − I 2 − I 3 = 0 ⇒ [ ( 10 − V 13 ) / R 1 ] − [ V 13 / R 2 ] − [ ( V 13 − V 23 ) / R 3 ] = 0 I_1-I_2-I_3=0⇒[(10-V_{13})/R_1]-[V_{13}/R_2]-[(V_{13}-V_{23})/R_3]=0 I1I2I3=0[(10V13)/R1][V13/R2][(V13V23)/R3]=0
  • Node 2: I 3 − I 4 − I 5 = 0 ⇒ [ ( V 13 − V 23 ) / R 3 ] − [ V 23 / R 4 ] + S 2 = 0 I_3-I_4-I_5=0 ⇒ [(V_{13}-V_{23})/R_3]-[V_{23}/R_4]+S_2=0 I3I4I5=0[(V13V23)/R3][V23/R4]+S2=0

因此,我们获得了具有 2 个未知参数的 2 个方程的线性系统,可以通过将直线与适当的因子相乘、排列项并用其值替换电阻器和源项来更清晰地重写该方程:

在这里插入图片描述

该系统可以重写为矩阵方程:

在这里插入图片描述

等式1:示例的矩阵方程

这种类型的方程可以很容易地用手或使用MatLab等计算机程序求解,解为 V 13 = 9.1 V V_{13}=9.1V V13=9.1V V 23 = 10.1 V V_{23}=10.1V V23=10.1V

由于每个电流都是这些值的函数,我们可以计算并列出它们:

  • I 1 = ( 10 − 9.1 ) / 1 = 0.9 A I_1=(10-9.1)/1=0.9A I1=(109.1)/1=0.9A
  • I 2 = 9.1 / 5 = 1.8 A I_2=9.1/5=1.8A I2=9.1/5=1.8A
  • I 3 = ( 9.1 − 10.1 ) / 2 = − 0.5 A I_3=(9.1-10.1)/2=-0.5A I3=(9.110.1)/2=0.5A
  • I 4 = 10.1 / 10 = 1 A I_4=10.1/10=1A I4=10.1/10=1A
  • I 5 = − 2 A I_5=-2A I5=2A

2、网格电流分析

2.1 概述

本节介绍了另一种简化基尔霍夫电路定律 的强大方法,例如节点电压分析,称为网状电流分析 (MCA)。 我们没有像之前的方法那样将分析集中在节点周围,而是标记了电路每个网格中循环的电流。 网格仅由一个循环组成,其中没有其他内部循环。

我们在下面列出了执行网格电流分析的以下步骤:

  • 1)电路每个网格上的属性和标签电流。 通常,我们选择顺时针方向正电流
  • 2)对与前面所述的电流方向相同的每个网格应用基尔霍夫电压定律 (KVL)。
  • 3)求解基尔霍夫电压定律分析中出现的循环方程。
  • 4)根据网格电流计算电路中所需的电流或电压。

2.2 示例

假设图 2 中所示的电路,我们将对其执行网格电流分析。 给出不同元件的值: S 1 = 12 V S_1=12V S1=12V S 2 = 6 V S_2=6V S2=6V R 1 = 15 Ω R_1=15\Omega R1=15Ω R 2 = 2 Ω R_2=2\Omega R2= R 3 = 12 Ω R_3=12\Omega R3=12Ω

在这里插入图片描述

图2:执行MCA的电路示例

电路中已经完成第一步,其中网格电流用红色环路符号标记。

正如步骤 2 所示,我们对电路的每个网格应用基尔霍夫电压定律:

  • 方程1: − V 1 + I 1 × ( R 1 + R 2 ) − I 2 × R 2 = 0 -V_1+I_1×(R_1+R_2)-I_2×R_2=0 V1+I1×(R1+R2)I2×R2=0
  • 方程2: V 2 − I 1 × R 2 + I 2 × ( R 2 + R 3 ) = 0 V_2-I_1×R_2+I_2×(R_2+R_3)=0 V2I1×R2+I2×(R2+R3)=0

在我们的例子中,网格电流 I 1 I_1 I1 I 2 I_2 I2 都存在于电阻器 R 2 R_2 R2 上,在两个方程中我们可以看到 R 2 R_2 R2 上的电流被视为 I 1 I_1 I1 I 2 I_2 I2 的代数和。

下面,我们用参数值替换参数,首先,根据第一个方程,我们将 I 1 I_1 I1 表示为 I 2 I_2 I2 的函数:

  • I 1 = ( 12 + 2 × I 2 ) / 17 I_1=(12+2×I_2)/17 I1=(12+2×I2)/17

我们将此项代入方程 2,重新分配各项后,可得出 I 2 = − 1 / 3 A I_2=-1/3A I2=1/3A。我们将此值代入 I 1 I_1 I1 的表达式中,可得出 I 1 = 2 / 3 A I_1=2/3 A I1=2/3A

最后,我们可以给出驱动电路所需的电流 I I = I 1 − I 2 = 1 A II=I_1-I_2=1A II=I1I2=1A

3、总结

  • 我们在本文中介绍了两种基于基尔霍夫电路定律的方法,称为节点电压分析 (NVA) 和网格电流分析 (MCA)。 这些方法可以更有效地分析电路,因为它们通过减少涉及的数学量,比 基于基尔霍夫定律更快地得出解决方案。
  • 每个分析都包含一系列要执行的步骤,这些方法在各自部分的开头单独介绍。
  • 另外,还给出了示例以说明如何使用这两种方法分析电阻电路。 我们可以注意到,对于具有电感器和电容器的电抗电路,NVA 或 MCA 分析会导致需要求解微分方程或微分方程组。

这篇关于【电路笔记】-节点电压分析和网状电流分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393280

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear