【电路笔记】-节点电压分析和网状电流分析

2023-11-11 22:36

本文主要是介绍【电路笔记】-节点电压分析和网状电流分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节点电压分析和网状电流分析

文章目录

  • 节点电压分析和网状电流分析
    • 1、节点电压分析
      • 1.1 概述
      • 1.2 示例
    • 2、网格电流分析
      • 2.1 概述
      • 2.2 示例
    • 3、总结

正如我们在上一篇介绍电路分析基本定律的文章中所看到的,基尔霍夫电路定律 (KCL) 是计算任何电路中未知电压和电流的强大而高效的工具。 然而,基尔霍夫电路定律有时会带来重复性的不便,并且并不是分析更复杂电路的最快方法。

有两种基于基尔霍夫电路定律的方法可以简化并提高电路分析的效率:节点电压分析和网格电流分析。

我们在本文中分别分两节介绍这两种方法。 在每个部分中,都给出了一个真实的例子来说明如何进行这些分析。

1、节点电压分析

1.1 概述

节点电压分析 (NVA) 基于基尔霍夫电流定律,用于确定电路节点处的未知电压。 它由一系列要遵循的步骤组成,简要列出如下:

  • 1)标记电路的基本节点,基本节点由三个或更多分支之间的连接点组成。
  • 2)选择其中一个节点作为电路的参考。 大多数情况下,它是底部节点。
  • 3)将支路中的电流表示为电压的函数。
  • 4)在参考节点以外的每个节点写出基尔霍夫电流定律。

1.2 示例

假设有图1中所示的以下电子电路,我们将对其执行节点电压分析。 对于数值应用,我们取 S 1 = 10 V S_1=10V S1=10V S 2 = 2 A S_2=2A S2=2A R 1 = 1 Ω R_1=1\Omega R1= R 2 = 5 Ω R_2=5\Omega R2= R 3 = 2 Ω R_3=2\Omega R3= R 4 = 10 Ω R_4=10\Omega R4=10Ω

在这里插入图片描述

图1:带有标记节点、电压和电流的电路示例

在该电路中,我们已经完成了步骤 1 和 2,Node3 已被选为电路的参考(地),并用接地符号表示。

根据步骤 3,我们可以将每个电流 I 1 I_1 I1 I 2 I_2 I2、…、 I 5 I_5 I5 写为 V 12 V_{12} V12 V 13 V_{13} V13 的函数,通过将欧姆定律应用于每个分支来计算电流:

  • I 1 = ( 10 − V 13 ) / R 1 I_1=(10-V_{13})/R_1 I1=(10V13)/R1
  • I 2 = V 13 / R 2 I_2=V_{13}/R_2 I2=V13/R2
  • I 3 = ( V 13 − V 23 ) / R 3 I_3=(V_{13}-V_{23})/R_3 I3=(V13V23)/R3
  • I 4 = V 23 / R 4 I_4=V_{23}/R_4 I4=V23/R4
  • I 5 = − S 2 = − 2 A I_5=-S_2=-2A I5=S2=2A

根据步骤4,我们在Node1和Node2处写出基尔霍夫电流定律:

  • Node1: I 1 − I 2 − I 3 = 0 ⇒ [ ( 10 − V 13 ) / R 1 ] − [ V 13 / R 2 ] − [ ( V 13 − V 23 ) / R 3 ] = 0 I_1-I_2-I_3=0⇒[(10-V_{13})/R_1]-[V_{13}/R_2]-[(V_{13}-V_{23})/R_3]=0 I1I2I3=0[(10V13)/R1][V13/R2][(V13V23)/R3]=0
  • Node 2: I 3 − I 4 − I 5 = 0 ⇒ [ ( V 13 − V 23 ) / R 3 ] − [ V 23 / R 4 ] + S 2 = 0 I_3-I_4-I_5=0 ⇒ [(V_{13}-V_{23})/R_3]-[V_{23}/R_4]+S_2=0 I3I4I5=0[(V13V23)/R3][V23/R4]+S2=0

因此,我们获得了具有 2 个未知参数的 2 个方程的线性系统,可以通过将直线与适当的因子相乘、排列项并用其值替换电阻器和源项来更清晰地重写该方程:

在这里插入图片描述

该系统可以重写为矩阵方程:

在这里插入图片描述

等式1:示例的矩阵方程

这种类型的方程可以很容易地用手或使用MatLab等计算机程序求解,解为 V 13 = 9.1 V V_{13}=9.1V V13=9.1V V 23 = 10.1 V V_{23}=10.1V V23=10.1V

由于每个电流都是这些值的函数,我们可以计算并列出它们:

  • I 1 = ( 10 − 9.1 ) / 1 = 0.9 A I_1=(10-9.1)/1=0.9A I1=(109.1)/1=0.9A
  • I 2 = 9.1 / 5 = 1.8 A I_2=9.1/5=1.8A I2=9.1/5=1.8A
  • I 3 = ( 9.1 − 10.1 ) / 2 = − 0.5 A I_3=(9.1-10.1)/2=-0.5A I3=(9.110.1)/2=0.5A
  • I 4 = 10.1 / 10 = 1 A I_4=10.1/10=1A I4=10.1/10=1A
  • I 5 = − 2 A I_5=-2A I5=2A

2、网格电流分析

2.1 概述

本节介绍了另一种简化基尔霍夫电路定律 的强大方法,例如节点电压分析,称为网状电流分析 (MCA)。 我们没有像之前的方法那样将分析集中在节点周围,而是标记了电路每个网格中循环的电流。 网格仅由一个循环组成,其中没有其他内部循环。

我们在下面列出了执行网格电流分析的以下步骤:

  • 1)电路每个网格上的属性和标签电流。 通常,我们选择顺时针方向正电流
  • 2)对与前面所述的电流方向相同的每个网格应用基尔霍夫电压定律 (KVL)。
  • 3)求解基尔霍夫电压定律分析中出现的循环方程。
  • 4)根据网格电流计算电路中所需的电流或电压。

2.2 示例

假设图 2 中所示的电路,我们将对其执行网格电流分析。 给出不同元件的值: S 1 = 12 V S_1=12V S1=12V S 2 = 6 V S_2=6V S2=6V R 1 = 15 Ω R_1=15\Omega R1=15Ω R 2 = 2 Ω R_2=2\Omega R2= R 3 = 12 Ω R_3=12\Omega R3=12Ω

在这里插入图片描述

图2:执行MCA的电路示例

电路中已经完成第一步,其中网格电流用红色环路符号标记。

正如步骤 2 所示,我们对电路的每个网格应用基尔霍夫电压定律:

  • 方程1: − V 1 + I 1 × ( R 1 + R 2 ) − I 2 × R 2 = 0 -V_1+I_1×(R_1+R_2)-I_2×R_2=0 V1+I1×(R1+R2)I2×R2=0
  • 方程2: V 2 − I 1 × R 2 + I 2 × ( R 2 + R 3 ) = 0 V_2-I_1×R_2+I_2×(R_2+R_3)=0 V2I1×R2+I2×(R2+R3)=0

在我们的例子中,网格电流 I 1 I_1 I1 I 2 I_2 I2 都存在于电阻器 R 2 R_2 R2 上,在两个方程中我们可以看到 R 2 R_2 R2 上的电流被视为 I 1 I_1 I1 I 2 I_2 I2 的代数和。

下面,我们用参数值替换参数,首先,根据第一个方程,我们将 I 1 I_1 I1 表示为 I 2 I_2 I2 的函数:

  • I 1 = ( 12 + 2 × I 2 ) / 17 I_1=(12+2×I_2)/17 I1=(12+2×I2)/17

我们将此项代入方程 2,重新分配各项后,可得出 I 2 = − 1 / 3 A I_2=-1/3A I2=1/3A。我们将此值代入 I 1 I_1 I1 的表达式中,可得出 I 1 = 2 / 3 A I_1=2/3 A I1=2/3A

最后,我们可以给出驱动电路所需的电流 I I = I 1 − I 2 = 1 A II=I_1-I_2=1A II=I1I2=1A

3、总结

  • 我们在本文中介绍了两种基于基尔霍夫电路定律的方法,称为节点电压分析 (NVA) 和网格电流分析 (MCA)。 这些方法可以更有效地分析电路,因为它们通过减少涉及的数学量,比 基于基尔霍夫定律更快地得出解决方案。
  • 每个分析都包含一系列要执行的步骤,这些方法在各自部分的开头单独介绍。
  • 另外,还给出了示例以说明如何使用这两种方法分析电阻电路。 我们可以注意到,对于具有电感器和电容器的电抗电路,NVA 或 MCA 分析会导致需要求解微分方程或微分方程组。

这篇关于【电路笔记】-节点电压分析和网状电流分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393280

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin