图像处理实例--Retinex增强处理

2023-11-11 19:19

本文主要是介绍图像处理实例--Retinex增强处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法概述

Retinex理论的基础理论是物体的颜色是由物体对长波(红色)、中波(绿色)、短波(蓝色)光线的反射能力来决定的,而不是由反射光强度的绝对值来决定的,物体的色彩不受光照非均匀性的影响,具有一致性,即retinex是以色感一致性(颜色恒常性)为基础的。不同于传统的线性、非线性的只能增强图像某一类特征的方法,Retinex可以在动态范围压缩、边缘增强和颜色恒常三个方面打到平衡,因此可以对各种不同类型的图像进行自适应的增强。

40多年来,研究人员模仿人类视觉系统发展了Retinex算法,从单尺度Retinex算法改进成多尺度加权平均的Retinex算法,再发展成彩色恢复多尺度Retinex算法。

算法优点

该算法可以平衡图像灰度动态范围压缩、图像增强和图像颜色恒常三个指标,能够实现对含雾图像的自适应性增强。

实验代码

function in=retinex(f,flag)
% 用retinex的msr实现图像去雾
%提取图像的RGB分量
fr=f(:,:,1);
fg=f(:,:,2);
fb=f(:,:,3);
%数据类型归一化
mr=mat2gray(im2double(fr));
mg=mat2gray(im2double(fg));
mb=mat2gray(im2double(fb));
%定义alpha参数
alpha=1200;
%定义模板大小
n=128;
%计算中心
n1=floor((n+1)/2);
for i=1:nfor j=1:n%高斯函数b(i,j)=exp(-((i-n1)^2+(j-n1)^2)/(4*alpha))/(pi*alpha);end
end
%卷积滤波
nr1=imfilter(mr,b,'conv','replicate');
ng1=imfilter(mg,b,'conv','replicate');
nb1=imfilter(mb,b,'conv','replicate');
ur1=log(nr1);
ug1=log(ng1);
ub1=log(nb1);
tr1=log(mr);
tg1=log(mg);
tb1=log(mb);
yr1=(tr1-ur1)/3;
yg1=(tg1-ug1)/3;
yb1=(tb1-ub1)/3;
%定义beta参数
beta=55;
%定义模板大小
%x=32;
%计算中心
%x1=floor((n+1)/2);
for i=1:nfor j=1:n%高斯函数a(i,j)=exp(-((i-n1)^2+(j-n1)^2)/(4*beta))/(6*pi*beta);end
end
%卷积滤波
nr2=imfilter(mr,a,'conv','replicate');
ng2=imfilter(mg,a,'conv','replicate');
nb2=imfilter(mb,a,'conv','replicate');
ur2=log(nr2);
ug2=log(ng2);
ub2=log(nb2);
tr2=log(mr);
tg2=log(mg);
tb2=log(mb);
yr2=(tr2-ur2)/3;
yg2=(tg2-ug2)/3;
yb2=(tb2-ub2)/3;
%定义eta参数
eta=13944.5;
%定义模板大小
%l=500;
%计算中心
%l1=floor((n+1)/2);
for i=1:nfor j=1:n%高斯函数e(i,j)=exp(-((i-n1)^2+(j-n1)^2)/(4*eta))/(4*pi*eta);end
end
%卷积滤波
nr3=imfilter(mr,e,'conv','replicate');
ng3=imfilter(mg,e,'conv','replicate');
nb3=imfilter(mb,e,'conv','replicate');
ur3=log(nr3);
ug3=log(ng3);
ub3=log(nb3);
tr3=log(mr);
tg3=log(mg);
tb3=log(mb);
yr3=(tr3-ur3)/3;
yg3=(tg3-ug3)/3;
yb3=(tb3-ub3)/3;
dr=yr1+yr2+yr3;
dg=yg1+yg2+yg3;
db=yb1+yb2+yb3;
cr=im2uint8(dr);
cg=im2uint8(dg);
cb=im2uint8(db);
%集成处理后的分量得到图像
in=cat(3,cr,cg,cb);
%结果显示figure;subplot(1,2,1);imshow(f);title('原图像');subplot(1,2,2);imshow(in);title('处理后的图像');
end

测试图像如下:

这里写图片描述

参考文献:《MATLAB计算机视觉与深度学习实战》刘衍琪 詹福宇等著 电子工业出版社 2017年6月

这篇关于图像处理实例--Retinex增强处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392281

相关文章

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

浅析Python中如何处理Socket超时

《浅析Python中如何处理Socket超时》在网络编程中,Socket是实现网络通信的基础,本文将深入探讨Python中如何处理Socket超时,并提供完整的代码示例和最佳实践,希望对大家有所帮助... 目录开篇引言核心要点逐一深入讲解每个要点1. 设置Socket超时2. 处理超时异常3. 使用sele

springboot+mybatis一对多查询+懒加载实例

《springboot+mybatis一对多查询+懒加载实例》文章介绍了如何在SpringBoot和MyBatis中实现一对多查询的懒加载,通过配置MyBatis的`fetchType`属性,可以全局... 目录springboot+myBATis一对多查询+懒加载parent相关代码child 相关代码懒

C++中的解释器模式实例详解

《C++中的解释器模式实例详解》这篇文章总结了C++标准库中的算法分类,还介绍了sort和stable_sort的区别,以及remove和erase的结合使用,结合实例代码给大家介绍的非常详细,感兴趣... 目录1、非修改序列算法1.1 find 和 find_if1.2 count 和 count_if1

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合