论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity

本文主要是介绍论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DASFFA 2023

1 intro

1.1 背景

  • 由于设备和环境的限制(设备故障,信号缺失),许多轨迹以低采样率记录,或者存在缺失的位置,称为不完整轨迹
    • 恢复不完整轨迹的缺失空间-时间点并降低它们的不确定性是非常重要的
  • 一般来说,关于轨迹恢复的先前研究可以分为两个方向
    • 第一个方向:模拟用户在不同位置之间的转换模式,以预测用户的缺失位置
      • 本质上是一个分类任务,恢复的轨迹通常由位置或POI组成
    • 第二个方向:基于记录的不完整轨迹数据,恢复缺失时间戳处的特定地理坐标
      • 最终重建的轨迹通常由精确的GPS或道路网络坐标组成
      • 论文专注于这个方法
      • 针对第二方向的一种直接方法是将单个轨迹直接视为二维时间序列,并应用时间序列插值方法来恢复不完整轨迹
        • 在恢复过程中耗尽单个不完整轨迹的所有精确信息
        • 当缺失轨迹数据的比例较小时效果非常好
        • 随着缺失比例的增加,有效性会显著下降
          • ——>无法处理稀疏的轨迹数据
      • 另一个常见的解决方案是基于单元格的方法
        • 将空间划分为离散的单元格,然后恢复由单元格描述的缺失轨迹,并设计不同的后校准算法来精炼结果
        • 将轨迹恢复问题从无限连续空间转换为有限离散空间,降低了预测的复杂性,提高了模型对转换模式的建模能力
        • 不足点
          • 仅使用不完整轨迹中包含的信息,而没有充分利用来自其他轨迹的信息
          • 使用单元格来表示轨迹,不可避免地会引入一些额外的噪声和不准确信息
          • 在校准阶段,缺乏获得准确轨迹坐标的有效信息

1.2 本文思路

  • 利用不同轨迹之间的相似性建模不完整轨迹的复杂移动规律,论文提出了一个新颖的轨迹恢复框架,称为具有增强轨迹相似性的深度轨迹恢复(SimiDTR),以恢复轨迹的精确坐标
    • 为了解决数据稀疏的问题,论文设计了一个基于规则的信息提取器,用于提取一个原始的相似轨迹,该轨迹具有关于给定不完整轨迹的相关空间信息
      • 原始的相似轨迹是通过整合来自几个其他相关不完整轨迹的信息得到的
    • 考虑到轨迹数据的特性(例如,空间偏差、时间偏差和时间位移),论文使用一个基于注意力的深度神经网络模型来整理这个原始的相似轨迹,并生成一个量身定制的相似轨迹,适应于不完整轨迹
      • 这个相似轨迹实际上并不存在,但最适合不完整轨迹的数据,用于恢复不完整轨迹
    • 为了充分利用轨迹坐标信息,我们在连续空间中进行轨迹恢复

2 related works

  • 根据要恢复的对象,轨迹恢复可以分为位置恢复和坐标恢复
    • 位置恢复旨在预测轨迹的缺失位置(例如,兴趣点POI)
      • Bi-STDDP考虑了双向时空依赖性
        • Modelling of bi-directional Spatio-temporal dependence and users’ dynamic preferences for missing poi checkin identification AAAI 2019
      • AttnMove利用注意力机制将聚合的历史轨迹信息注入恢复过程
        • AttnMove: history enhanced trajectory recovery via attentional network 2021 Arxiv
      • 在AttnMove的基础上,PeriodicMove考虑了轨迹移动周期性的影响
        • PeriodicMove: shiftaware human mobility recovery with graph neural network CIKM 2021
    • 坐标恢复
      • 基于时间序列的方法
        • 将轨迹数据视为二维时间序列,时间序列插补方法可以用来恢复轨迹(时间序列)中缺失的坐标
      • 基于单元格的方法
        • 生成由单元格表示的恢复轨迹,然后使用后校准算法获取轨迹的坐标
        • Wei等人构建了一个通过聚合轨迹的top-k路线推断框架
          • 使用线性回归作为后校准模块
        • Ren等人提出了一个深度学习模型,该模型利用传统的seq2seq框架和注意力机制
          • 将单元格级轨迹输入深度学习模型,并直接预测道路段ID和移动比例

3 问题定义

3.1 位置

一个位置由 l=(lon,lat) 表示,其中 lonlon 和 latlat 分别代表其经度和纬度

3.2 区域

将地理空间划分为一组离散且不相交的正方形区域,记为 R。每个区域(也称为网格或单元格),记为 r∈R

3.3 轨迹点

  • 轨迹点是从移动对象采样的点,表示为 )p=(lon,lat,t),其中 t 表示其时间戳。
  • 如果已知轨迹点的位置,则为记录的轨迹点(简称记录点),我们可以得到该点所在的区域 r。
  • 否则,它是一个缺失的轨迹点(简称缺失点),表示为\tilde{p}

3.4 采样间隔

  • 采样间隔,记为 Δ,是两个连续轨迹点之间的时间差
  • 理想情况下,轨迹数据的采样间隔是固定常数,但由于轨迹数据的固有时间偏差,采样间隔在大多数情况下经常接近 Δ 变化

3.5 完整轨迹

记为tr=p1​→…→pi​→…→pn​,是从移动对象采样的记录点序列,其中 pi​ 是 tr 的第 i 个轨迹点

3.6 不完整轨迹

一个不完整轨迹由记录点序列和缺失点组成

3.7 问题定义

给定一组具有采样间隔 Δ 的不完整轨迹,目标是恢复它们缺失的坐标

4 模型

4.1 基于规则的信息提取器

4.1.1 填充模组

4.2 轨迹embedding层

  • 对于一个不完整的轨迹 tr=p1​→⋯→pn​,n∈N,其中 n 是轨迹 tr 的长度,N 是数据集中最长轨迹的长度。
  • 轨迹 tr 的位置和时间戳分别是 L∈Rn×2 和T∈Rn×1

4.2.1 位置嵌入

4.2.2 时间戳嵌入

  • 对于 T 中的每个时间戳 t,可以计算出 t 是当前小时的第 t_{min}分钟和当前分钟的第t_{sec}
  • 然后我们将它们映射到区间 [-0.5, 0.5] 并遵循线性变换

4.2.3 坐标嵌入

为了确保缺失点(由0 \in R^{1 \times 2}填充)在映射到高维空间时仍然是 0 ( 0 \in R^{1 \times d} ),我们使用一维卷积作为映射函数

4.2.4 嵌入整合

  • 假设 tr 的原始相似轨迹表示为 trrs。
    • 因为trrs只是相关空间信息的刚性组合,这意味着 T 在缺失点上不适合 trrs

4.3 encoder-decoder

5 实验

5.1 数据

  • 从波尔图1和上海2收集的两个真实世界出租车轨迹数据集。
    • 对于波尔图数据集,我们将间隔从15秒转换为1分钟
    • 对于上海出租车数据集,我们将出租车的停留点视为边界来分割它们整天的轨迹
  • 移除所有包含超出纬度和经度范围点的轨迹
  • 如果某一区域中的轨迹点数量少于区域点阈值,我们将移除这些区域以及其中的点
  • 经过预处理后,波尔图的时间间隔是常数,即60秒,而上海的时间间隔是可变的
  • 将每个数据集分成三个部分,分割比例为7:1:2,作为训练集、验证集和测试集
  • 随机保留每条轨迹1 − ratio%(ratio =30, 50, 70)的点

5.2 结果

这篇关于论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391980

相关文章

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

操作系统实训复习笔记(1)

目录 Linux vi/vim编辑器(简单) (1)vi/vim基本用法。 (2)vi/vim基础操作。 进程基础操作(简单) (1)fork()函数。 写文件系统函数(中等) ​编辑 (1)C语言读取文件。 (2)C语言写入文件。 1、write()函数。  读文件系统函数(简单) (1)read()函数。 作者本人的操作系统实训复习笔记 Linux

LVGL快速入门笔记

目录 一、基础知识 1. 基础对象(lv_obj) 2. 基础对象的大小(size) 3. 基础对象的位置(position) 3.1 直接设置方式 3.2 参照父对象对齐 3.3 获取位置 4. 基础对象的盒子模型(border-box) 5. 基础对象的样式(styles) 5.1 样式的状态和部分 5.1.1 对象可以处于以下状态States的组合: 5.1.2 对象

DDS信号的发生器(验证篇)——FPGA学习笔记8

前言:第一部分详细讲解DDS核心框图,还请读者深入阅读第一部分,以便理解DDS核心思想 三刷小梅哥视频总结! 小梅哥https://www.corecourse.com/lander 一、DDS简介         DDS(Direct Digital Synthesizer)即数字合成器,是一种新型的频率合成技术,具有低成本、低功耗、高分辨率、频率转换时间短、相位连续性好等优点,对数字信

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

【软考】信息系统项目管理师(高项)备考笔记——信息系统项目管理基础

信息系统项目管理基础 日常笔记 项目的特点:临时性(一次性)、独特的产品、服务或成果、逐步完善、资源约束、目的性。 临时性是指每一个项目都有确定的开始和结束日期独特性,创造独特的可交付成果,如产品、服务或成果逐步完善意味着分步、连续的积累。例如,在项目早期,项目范围的说明是粗略的,随着项目团队对目标和可交付成果的理解更完整和深入时,项目的范围也就更具体和详细。 战略管理包括以下三个过程

【软考】信息系统项目管理师(高项)备考笔记——信息化与信息系统

信息化与信息系统 最近在备考信息系统项目管理师软考证书,特记录笔记留念,也希望可以帮到有需求的人。 因为这是从notion里导出来的,格式上可能有点问题,懒的逐条修改了,还望见谅! 日常笔记 核心知识 信息的质量属性:1.精确性 2.完整性 3.可靠性 4.及时性 5.经济性 6.可验证下 7.安全性 信息的传输技术(通常指通信、网络)是信息技术的核心。另外,噪声影响的是信道

flex布局学习笔记(flex布局教程)

前端笔试⾯试经常会问到:不定宽⾼如何⽔平垂直居中。最简单的实现⽅法就是flex布局,⽗元素加上如下代码即 可: display: flex; justify-content: center; align-items :center; 。下⾯详细介绍下flex布局吧。   2009年,W3C提出了 Flex布局,可以简便⼂完整⼂响应式地实现各种页⾯布局。⽬前已得到了所有浏览器的⽀持,这意味着,现