数据白化预处理

2023-11-11 08:18
文章标签 数据 预处理 白化

本文主要是介绍数据白化预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注公众号,更多知识分享,多谢


数据白化预处理

    随机向量的“零均值化”和“空间解相关”是最常用的两个预处理过程,其中“零均值化”比较简单,而“空间解相关”涉及一些矩阵的知识。

    设有均值为零的随机信号向量 x ,其自相关矩阵

R_x=E[xx^T]\neq I

很明显, R_x 是对称矩阵,且是非负定的(所有特征值都大于或等于0)。

    现在,寻找一个线性变换 Bx 进行变换,即 y=Bx ,使得

R_y=BE[xx^T]B^T=I

上式的含义是:y的各分量是不相关的,即 E[y_i y_j]=\delta_{ij} 。通常将这个过程称为“空间解相关”、“空间白化”或“球化”。 B 称为空间解相关矩阵(空间白化矩阵、球化矩阵)。

    由 R_x 的性质可知,其存在特征值分解:

R_x = Q\Sigma Q^T

Q 是正交矩阵, \Sigma 是对角矩阵,其对角元素是 R_x 特征值。

    令

\begin{equation}\label{eq:B}B=\Sigma^{-1/2} Q^T\end{equation}

则有

R_y = (\Sigma^{-1/2} Q^T)Q \Sigma Q^T (\Sigma^{-1/2} Q^T)^T = I

因此,通过矩阵 B 线性变换后, y 的各个分量变得不相关了。

    对于 R_x 来说,特征值分解和奇异值分解是等价的,而奇异值分解的数值算法比特征值分解的数值算法具有更好的稳定性,因此一般都用奇异值分解来构造空间解相关矩阵 B

    应该注意到,“空间解相关”不能保证各分量信号之间的“独立性”,但它能够简化盲分离算法或改善分离算法的性能。

注:以上来自戴老师《盲信号处理》的课件。

    最为熟知的例子是白噪声。元素 x_i 可以是一个时间序列在相继时间点 i=1,2,... 的值,且在噪声序列中没有时间上得相关性。术语“白”来自于白噪声的能谱在所有频率上是一个常数这一事实,就像含有各种颜色的白光谱一样。白化的本质就是去相关加缩放。

    式\eqref{eq:B}的解相关矩阵 B 肯定不是唯一的白化矩阵。容易看到,任何矩阵 UBU 为正交矩阵)也是白化矩阵。这是因为对 y=UBx ,下式成立:

E[yy^T] = UBE[xx^T]B^TU^T = UIU^T = I

    一个重要的例子是矩阵 Q \Sigma^{-1/2} Q^T 。这也是一个白化矩阵,因为它是用正交矩阵 Q 左乘式\eqref{eq:B}的 B 得到的。这个矩阵称为 C_x 的逆均方根,并用 C_x^{-1/2} 表示,因为它来自于均方根概念向矩阵的标准推广。

注:以上来自《Independent Component Analysis》

    关于白化代码的实现,其实很简单,下面给一个

function [z_w varargout] = myWhiten(z)

%--------------------------------------------------------------------------

% 语法:z_w = myWhiten(z);

%     [z_w T] = myWhiten(z);

% 输入:z是一个mxn的矩阵,包含m维随机变量的各n个采样点。

% 输出:z_w是白化版本的z。T是mxm的白化变换矩阵。

%--------------------------------------------------------------------------

 

%% 计算样本协方差

R = cov(z'); % 1表示除以N来计算协方差

 

%% 白化z

[U D ~] = svd(R, 'econ'); % 用eig也行,[U, D] = eig(R);

 

%% 下面求白化矩阵

T = U * inv (sqrt(D)) * U'; % 称为协方差矩阵的逆均方根,inv计算不会太耗时间,因为D为对角阵。inv(sqrt(D))*U'也是一个可行白化矩阵

 

%% 乘以白化矩阵实现白化

z_w = T * z;

 

if (nargout == 2)

    varargout{1} = T;

end

    另外可以直接利用FastICA的白化函数whitenv,它要配合其提供的PCA函数pcamat.m完成白化,其提供的例子中有提示如下

% EXAMPLE

%       [E, D] = pcamat(vectors);

%       [nv, wm, dwm] = whitenv(vectors, E, D);

    之前写过关于FastICA工具箱的使用,再把使用白化的例子给出来吧:

 

 

% 测试whitenv函数

clc

clear

close all

 

% 加载matlab自带的数据

load cities

stdr = std(ratings);

sr = ratings./repmat(stdr,329,1);

sr = sr';

 

figure

boxplot(sr','orientation','horizontal','labels',categories)

 

% 测试

firstEig = 1;

lastEig = 9;

s_interactive = 'off';

 

sr = remmean(sr); % 下面的pcamat和whitenv都没有去均值,这里先做取均值处理

[E, D] = pcamat(sr, firstEig, lastEig, s_interactive);

[nv, wm, dwm] = whitenv(sr, E, D);

 

figure

boxplot(nv','orientation','horizontal','labels',categories)

 

 

 

结果如下

 

PCA:    PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化。    PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小。另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待。    在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值。但是比较奇怪的是,在对自然图像进行均值处理时并不是不是减去该维的平均值,而是减去这张图片本身的平均值。因为PCA的预处理是按照不同应用场合来定的。    自然图像指的是人眼经常看见的图像,其符合某些统计特征。一般实际过程中,只要是拿正常相机拍的,没有加入很多人工创作进去的图片都可以叫做是自然图片,因为很多算法对这些图片的输入类型还是比较鲁棒的。在对自然图像进行学习时,其实不需要太关注对图像做方差归一化,因为自然图像每一部分的统计特征都相似,只需做均值为0化就ok了。不过对其它的图片进行训练时,比如首先字识别等,就需要进行方差归一化了。    PCA的计算过程主要是要求2个东西,一个是降维后的各个向量的方向,另一个是原先的样本在新的方向上投影后的值。    首先需求出训练样本的协方差矩阵,如公式所示(输入数据已经均值化过):        求出训练样本的协方差矩阵后,将其进行SVD分解,得出的U向量中的每一列就是这些数据样本的新的方向向量了,排在前面的向量代表的是主方向,依次类推。用U’*X得到的就是降维后的样本值z了,即:        (其实这个z值的几何意义是原先点到该方向上的距离值,但是这个距离有正负之分),这样PCA的2个主要计算任务已经完成了。用U*z就可以将原先的数据样本x给还原出来。   在使用有监督学习时,如果要采用PCA降维,那么只需将训练样本的x值抽取出来,计算出主成分矩阵U以及降维后的值z,然后让z和原先样本的y值组合构成新的训练样本来训练分类器。在测试过程中,同样可以用原先的U来对新的测试样本降维,然后输入到训练好的分类器中即可。

 

有一个观点需要注意,那就是PCA并不能阻止过拟合现象。表明上看PCA是降维了,因为在同样多的训练样本数据下,其特征数变少了,应该是更不容易产生过拟合现象。但是在实际操作过程中,这个方法阻止过拟合现象效果很小,主要还是通过规则项来进行阻止过拟合的。   并不是所有ML算法场合都需要使用PCA来降维,因为只有当原始的训练样本不能满足我们所需要的情况下才使用,比如说模型的训练速度,内存大小,希望可视化等。如果不需要考虑那些情况,则也不一定需要使用PCA算法了。    Whitening:    Whitening的目的是去掉数据之间的相关联度,是很多算法进行预处理的步骤。比如说当训练图片数据时,由于图片中相邻像素值有一定的关联,所以很多信息是冗余的。这时候去相关的操作就可以采用白化操作。数据的whitening必须满足两个条件:一是不同特征间相关性最小,接近0;二是所有特征的方差相等(不一定为1)。常见的白化操作有PCA whitening和ZCA whitening。    PCA whitening是指将数据x经过PCA降维为z后,可以看出z中每一维是独立的,满足whitening白化的第一个条件,这是只需要将z中的每一维都除以标准差就得到了每一维的方差为1,也就是说方差相等。公式为:        ZCA whitening是指数据x先经过PCA变换为z,但是并不降维,因为这里是把所有的成分都选进去了。这是也同样满足whtienning的第一个条件,特征间相互独立。然后同样进行方差为1的操作,最后将得到的矩阵左乘一个特征向量矩阵U即可。   ZCA whitening公式为

 

这篇关于数据白化预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388731

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者