SemEval 2022 | 多语种新闻相似度评测冠军系统简介

2023-11-11 06:50

本文主要是介绍SemEval 2022 | 多语种新闻相似度评测冠军系统简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每天给你送来NLP技术干货!


来自:哈工大讯飞联合实验室

在前不久落下帷幕的第十六届国际语义评测比赛(The 16th International Workshop on Semantic Evaluation, SemEval 2022)中,哈工大讯飞联合实验室(HFL)在多语种新闻相似度评测任务(Task 8: Multilingual News Article Similarity)上以显著的领先优势斩获冠军。本期我们将对这个任务的夺冠系统进行简要介绍,更多具体细节请参考我们的论文。

论文标题:HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity

论文作者:徐梓航,杨子清,崔一鸣,陈志刚

论文链接:https://arxiv.org/abs/2204.04844

项目地址:https://github.com/GeekDream-x/SemEval2022-Task8-TonyX

ff2c2e585ec7e890cc6bf79f88be9b0d.png

任务介绍

SemEval-2022 Task 8是多语种新闻相似度评价任务。任务中给出来自多种语言的新闻篇章对,参赛队伍需要利用模型判定每一对新闻篇章是否描述了同一个事件,并以1至4分的范围为两篇新闻的相似度打分。任务共计覆盖10种语言,包括阿拉伯语、德语、英语、西班牙语、法语、意大利语、波兰语、俄语、土耳其语和中文。与普通的文章相似度任务相比,该评测任务强调考察模型的跨语言理解能力,并要求模型把握文章中描述的具体事件,而不仅是写作风格。 

ccb5e9ab360a39b769480e02a49b6bbd.png

SemEval 2022 Task8 数据样例

系统介绍

我们在语言学特征的启发下,基于多语言预训练模型和回归任务框架,针对当前比赛任务制定了一系列优化策略,最终系统结构如下图所示。整个系统流程包括数据处理、模型训练和预测结果后处理三个阶段:

    1. 数据处理:从指定网页爬取数据,进行数据清理,对清理后的数据做数据增强;

    2. 模型训练:采用基于XLM-R的多语言模型构建的多任务回归打分模型;

    3. 后处理:基于任务数据本身特性,对预测得分进行裁剪。

下面将针对部分主要优化技巧进行简要介绍。

ea6f54f1569ca684e09c73c68c2336f9.png

SemEval 2022 Task8 HFL系统结构


1、数据增强

通过对比训练集和测试集数据分布,我们发现测试集多出3种语言及7种跨语言组合且非英语种占比差别巨大,因此,我们基于训练集进行了两阶段数据增强。首先,为了丰富训练集本身的非英语种数据,我们通过回译对所有包含非英语种的样本对进行了翻倍扩充。而后,通过直译对测试集新出现的语言和跨语言组合进行增强。为了保证增强后的数据具有足够强的语义丰富性,我们选用不同的原语言数据进行直译;同时,我们考虑了不同语种间基于语系语族的亲疏关系,设计了不同增强比例,具体方案如下表。对于和英语相近的语言,增强的样本较少(如德-法对新增317条样本);而和英语关系较远的语言,则增强了较多样本(如中-英对新增了800条样本)。

aeccf7e20ad90dbb340d24c196415c07.png

直译数据增强配对表

2、头尾拼接

由于XLM-RoBERTa所能处理的文本长度有限且数据集中有74%的篇章都长于256个token, 因此考虑对样本进行截取。新闻篇章有鲜明的结构特性,即头部(含标题)和尾部的信息量相对更大,因此我们决定将头尾进行拼接并尝试了不同比例,最终根据对照实验结果,选取头尾长度比例约4:1进行裁剪拼接。

3、多任务学习

如任务介绍部分所示,数据集提供了每个新闻篇章样本从Tone、Narrative等七个维度的相似性打分。尽管最终评测只针对Overall这个整体性维度,但我们认为合理地利用其它六个维度的信息将有助于提升整体性评估的效果,于是我们尝试了多种维度占比方案,发现当Overall权重提高时,模型最终性能有先提升后小幅降低的现象,最终模型选择性能达到峰值所对应的Overall权重范围。

4、Adapted R-Drop

R-Drop被证明是一种简单且有效的基于Dropout的正则化技术,为了更好地适应当前的任务,我们将其中的KL-divergence loss替换为MSE loss,并且通过超参来控制多任务回归学习损失和R-Drop损失的比例。在此基础上,我们还探索了不同forward次数对模型性能的影响。公式如下图所示:

1b56c492926a34f388bf38b179e6aa07.png

Adapted R-Drop Loss计算公式

其中50d36fff91c63e961cfec4b09184a33f.pngbf7decaba566cb7cea12bcedc4313a55.png是样本两次forward的预测值,51d77935d5740b223bd59e7828888a78.png是样本真实值,α控制两种损失的相对强度。

5、其他尝试

除了上述方法,我们还尝试了模型加大增宽、多种获取篇章向量的方案如不同层pooling、基于双塔结构的交互回归框架等,在此任务上这些方法的表现都明显逊色于我们的最终方案。

实验结果

基于多组消融实验,上述提及的五种有效提升方案单独的优化能力如下表所示。

  • 我们针对数据增强做了对照实验(+DA),基于增强集训练得到的模型在测试集上性能提升最为明显,体现了该任务中数据丰富度的重要性。

  • 我们基于非数据增强场景,对其他优化技巧做了对照实验(头尾拼接、多标签、Adapted R-drop、多层分类层等),其中Adapted R-Drop效果最佳。

94e638af947c7839225c1020f44b7dd1.png

各优化方案实验结果

0d1fae1bf463df53727cd0282ae6d095.png

多语种新闻相似度评测任务最终榜单:哈工大讯飞联合实验室排名第一

结论

在三阶段系统框架中,数据处理部分主要使用了两种数据增强的方案,模型训练部分集成了头尾拼接、多任务、Adapted R-Drop和额外线性层等所有有效方案,后处理部分主要进行了打分裁剪和模型融合等工作,最终使得系统整体性能较baseline有较为显著的提升。在多语言新闻相似度场景中,上述优化方案较为充分地挖掘了多语言预训练模型的能力,后续研究工作中,可以尝试添加各语言规则相关特征来进一步提升系统在低资源语言上的表现。

1c5b5256bdf9753a52962636e5b83be5.png

最近文章

EMNLP 2022 和 COLING 2022,投哪个会议比较好?

一种全新易用的基于Word-Word关系的NER统一模型,刷新了14种数据集并达到新SoTA

阿里+北大 | 在梯度上做简单mask竟有如此的神奇效果

ACL'22 | 快手+中科院提出一种数据增强方法:Text Smoothing,非常简单且有效尤其在数据不足的情况下

这篇关于SemEval 2022 | 多语种新闻相似度评测冠军系统简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388284

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能