Verilog语言fpga小脚丫数字时钟(整点报时,调时,显示秒钟等功能)

本文主要是介绍Verilog语言fpga小脚丫数字时钟(整点报时,调时,显示秒钟等功能),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学弟加油!                                                                       ———来自科大焯人

最近刚好学习了数电有关知识,就做了这个项目(闹钟过于繁琐就没有做了)

希望给还在学习的大伙一点参考,完整代码在最后

在这里先附上两串代码分别是debounce(按键消抖)和divide(分频)

这两个在小脚丫的示例中都可以找到,但我还是先附在这

//按键消抖
module debounce (clk,rst,key,key_pulse);parameter       N  =  1;                      //要消除的按键的数量input             clk;input             rst;input 	[N-1:0]   key;                        //输入的按键					output  [N-1:0]   key_pulse;                  //按键动作产生的脉冲	reg     [N-1:0]   key_rst_pre;                //定义一个寄存器型变量存储上一个触发时的按键值reg     [N-1:0]   key_rst;                    //定义一个寄存器变量储存储当前时刻触发的按键值wire    [N-1:0]   key_edge;                   //检测到按键由高到低变化是产生一个高脉冲//利用非阻塞赋值特点,将两个时钟触发时按键状态存储在两个寄存器变量中always @(posedge clk  or  negedge rst)beginif (!rst) beginkey_rst <= {N{1'b1}};                //初始化时给key_rst赋值全为1,{}中表示N个1key_rst_pre <= {N{1'b1}};endelse beginkey_rst <= key;                     //第一个时钟上升沿触发之后key的值赋给key_rst,同时key_rst的值赋给key_rst_prekey_rst_pre <= key_rst;             //非阻塞赋值。相当于经过两个时钟触发,key_rst存储的是当前时刻key的值,key_rst_pre存储的是前一个时钟的key的值end    endassign  key_edge = key_rst_pre & (~key_rst);//脉冲边沿检测。当key检测到下降沿时,key_edge产生一个时钟周期的高电平reg	[17:0]	  cnt;                       //产生延时所用的计数器,系统时钟12MHz,要延时20ms左右时间,至少需要18位计数器     //产生20ms延时,当检测到key_edge有效是计数器清零开始计数always @(posedge clk or negedge rst)beginif(!rst)cnt <= 18'h0;else if(key_edge)cnt <= 18'h0;elsecnt <= cnt + 1'h1;end  reg     [N-1:0]   key_sec_pre;                //延时后检测电平寄存器变量reg     [N-1:0]   key_sec;                    //延时后检测key,如果按键状态变低产生一个时钟的高脉冲。如果按键状态是高的话说明按键无效always @(posedge clk  or  negedge rst)beginif (!rst) key_sec <= {N{1'b1}};                else if (cnt==18'h3ffff)key_sec <= key;  endalways @(posedge clk  or  negedge rst)beginif (!rst)key_sec_pre <= {N{1'b1}};else                   key_sec_pre <= key_sec;             end      assign  key_pulse = key_sec_pre & (~key_sec);     endmodule
//分频
module divide (	clk,rst_n,clkout);input 	clk,rst_n;                       //输入信号,其中clk连接到FPGA的C1脚,频率为12MHzoutput	clkout;                          //输出信号,可以连接到LED观察分频的时钟//parameter是verilog里常数语句parameter	WIDTH	= 24;             //计数器的位数,计数的最大值为 2**WIDTH-1parameter	N	= 12_000_000;             //分频系数,请确保 N < 2**WIDTH-1,否则计数会溢出reg 	[WIDTH-1:0]	cnt_p,cnt_n;     //cnt_p为上升沿触发时的计数器,cnt_n为下降沿触发时的计数器reg			clk_p,clk_n;     //clk_p为上升沿触发时分频时钟,clk_n为下降沿触发时分频时钟//上升沿触发时计数器的控制always @ (posedge clk or negedge rst_n )         //posedge和negedge是verilog表示信号上升沿和下降沿//当clk上升沿来临或者rst_n变低的时候执行一次always里的语句beginif(!rst_n)cnt_p<=0;else if (cnt_p==(N-1))cnt_p<=0;else cnt_p<=cnt_p+1;             //计数器一直计数,当计数到N-1的时候清零,这是一个模N的计数器end//上升沿触发的分频时钟输出,如果N为奇数得到的时钟占空比不是50%;如果N为偶数得到的时钟占空比为50%always @ (posedge clk or negedge rst_n)beginif(!rst_n)clk_p<=0;else if (cnt_p<(N>>1))          //N>>1表示右移一位,相当于除以2去掉余数clk_p<=0;else clk_p<=1;               //得到的分频时钟正周期比负周期多一个clk时钟end//下降沿触发时计数器的控制        	always @ (negedge clk or negedge rst_n)beginif(!rst_n)cnt_n<=0;else if (cnt_n==(N-1))cnt_n<=0;else cnt_n<=cnt_n+1;end//下降沿触发的分频时钟输出,和clk_p相差半个时钟always @ (negedge clk)beginif(!rst_n)clk_n<=0;else if (cnt_n<(N>>1))  clk_n<=0;else clk_n<=1;                //得到的分频时钟正周期比负周期多一个clk时钟endassign clkout = (N==1)?clk:(N[0])?(clk_p&clk_n):clk_p;      //条件判断表达式//当N=1时,直接输出clk//当N为偶数也就是N的最低位为0,N(0)=0,输出clk_p//当N为奇数也就是N最低位为1,N(0)=1,输出clk_p&clk_n。正周期多所以是相与
endmodule 

将上述两个代码文件准备好就可以开始编写我们的主体程序了。

既然是数字时钟,首先我们应当通过分频器产生1s中的信号,代码中的clk1h是我用分频器产生的1Hz信号。每经过1Hz的上升沿秒钟进一位,在秒钟个位为9且十位不为5时,下一次进位个位要变为0,十位要加1,若是59秒时则应当都置零。同时,分钟的计时和时钟的计时实现思路与秒钟计时类似,但需要额外进行判断,比如说分钟进位要在秒钟均为0时才产生进位,时钟进位要在分钟秒钟全为0时才进位。

时钟和分钟的敏感信号为clk,这是小脚丫自带的时钟信号12MHz。由于clk频率极高,在1s中内能够触发分钟和时钟计时模块多次,为实现分钟和时钟在进位时仅进位一次,我额外增加了两个判断位,分别为pan(分钟)和pan1(时钟)。在pan和pan1为0时才能分别触发分钟和时钟进位,并且触发一次进位后pan或pan1置1,直到秒钟或者分钟不全为0时pan或pan1才会重新置0。

具体代码如下

//60秒计时控制always @ (posedge clk1h ) beginif(cnt_shi==5 && cnt_ge==9) begincnt_shi <= 0;cnt_ge <= 0;endelse if(cnt_shi==0 && cnt_ge==0) begincnt_shi <= 0;cnt_ge <= 1;endelse if(cnt_ge==9)begincnt_ge <= 0;cnt_shi <= cnt_shi+1;endelsecnt_ge <= cnt_ge +1;end
//60分计时控制always @ (posedge clk)beginif((cnt_ge==0)&&(cnt_shi==0)&&(pan==0))beginpan<=1;if(minute_shi==5 && minute_ge==9) beginminute_shi <= 0;minute_ge <= 0;endelse if(minute_ge==9)beginminute_ge <= 4'd0;minute_shi <= minute_shi+1;endelseminute_ge <= minute_ge +1;endelseif((cnt_ge!=0) || (cnt_shi!=0))beginpan<=0;end
//24小时计时与加减法模块always @ (posedge clk ) beginif ((minute_ge==0)&&(minute_shi==0)&&(pan1==0)&&(cnt_shi==0)&&(cnt_ge==0)) beginpan1<=1;if(hour_shi==2 && hour_ge==3) beginhour_shi <= 0;hour_ge <= 0;endelse if(hour_ge==9)beginhour_ge <= 4'd0;hour_shi <= hour_shi+1;endelsehour_ge <= hour_ge +1;endelseif((minute_ge!=0) || (minute_shi!=0))beginpan1<=0;end

至此,我们已经基本实现了数字时钟的运行,但还需要将时钟信息显示在数码管上。

我将按键触发的信号位记作change和change2。当change2为高电平且change为低电平时,数码管显示分钟;当change2为高电平且change为高电平时,数码管显示时钟;而当change2为低电平时,不论change电平,均显示秒钟。

//数码管显示数字seg[0] = 7'h3f;	   //  0seg[1] = 7'h06;	   //  1seg[2] = 7'h5b;	   //  2seg[3] = 7'h4f;	   //  3seg[4] = 7'h66;	   //  4seg[5] = 7'h6d;	   //  5seg[6] = 7'h7d;	   //  6seg[7] = 7'h07;	   //  7seg[8] = 7'h7f;	   //  8seg[9] = 7'h6f;	   //  9//选择显示always @ (posedge clk)beginif((change==0)&&(change2==1))beginseg_led_1<= seg[hour_ge];seg_led_2<= seg[hour_shi];endelse if((change==1)&&(change2==1))beginseg_led_1<= seg[minute_ge];seg_led_2<= seg[minute_shi];endelse if(change2==0)beginseg_led_1<= seg[cnt_ge];seg_led_2<= seg[cnt_shi];endend

所有基础功能都已经实现,现在还需要进阶,也就是调时和整点报时的实现。

我们先讲调时的实现

我在实现加减法的时候均用了两个计数器add、add1和jian、jian1。

add和jian分别为按键按下次数的计数器,而add1和jian1则分别为add和jian的匹配计数器。

当add1不等于add时,将时钟进一位,并且add1+1;当jian1不等于jian时,将时钟退一位,再将jian1+1,便可以实现调时的功能。

我在写代码的时候是将调时模块整合在计时模块中的,时钟调时与分钟调时的原理是相同的。

        if((add1!=add)&&(change==1)) beginadd1<=add1+1;if(minute_shi==5 && minute_ge==9) beginminute_shi <= 0;minute_ge <= 0;endelse if(minute_ge==9)beginminute_ge <= 4'd0;minute_shi <= minute_shi+1;endelseminute_ge <= minute_ge +1;endif((jian1!=jian)&&(change==1))beginjian1<=jian1+1;if(minute_shi==0 && minute_ge==0)beginminute_ge<=9;minute_shi<=5;endelse if(minute_ge==0)beginminute_ge<=9;minute_shi<=minute_shi-1;endelseminute_ge<=minute_ge-1;end

最后便是整点报时的实现

整点报时需要让灯光按照1Hz的频率闪烁,那么我们便可以用一个2Hz的时钟信号作为敏感信号来触发灯光闪烁。

首先只有在秒钟分钟均为0时才算作整点,在这个条件下我又用到了两个计数器cnt、cnt1与加减法的计数器功能一致,cnt1为当前整点数的两倍(因为一亮一灭需要灯光反转两次),cnt为匹配计数器,当cnt不等于cnt1时灯光反转一次,并且cnt+1。具体代码实现如下。

 //整点报时always @(posedge clk0)beginled=~led;if((minute_shi==0)&&(minute_ge==0)&&(cnt_shi==0)&&(cnt_ge==0))begincnt1=2*(10*hour_shi+hour_ge);endif(cnt!=cnt1)beginrgb=~rgb;cnt<=cnt+1;endelse if(cnt==cnt1)begincnt<=0;cnt1<=0;endend

以上就是整个数字时钟的设计,最后附上数字时钟的全部代码(记得把文首的debounce和devide两个代码也装上,不然数字时钟代码无法成功编译)

module counter
(clk				,    //时钟rst				,    //复位plus            ,    //加法为cut             ,    //减法位change			,    //显示转化按键1change2         ,    //显示转化按键2seg_led_1		,    //数码管1seg_led_2		,    //数码管2rgb             ,    //rgb灯光led                  //led
);input 	clk,rst;input	change;input   change2;input   plus,cut;output 	reg [8:0]	seg_led_1,seg_led_2;output 	reg	[7:0]	led;output  reg [5:0]   rgb;wire        clk0;         //0.5秒时钟wire		clk1h;        //1秒钟时钟wire		change_pulse; //转换按键消抖后信号wire        plus_pulse;   //加法按键消抖后信号wire        cut_pulse;    //减法按键消抖后信号reg			change_flag;  //转换按键标志位reg         plus_flag;    //加法按键标志位reg         cut_flag;     //减法按键标志位reg         pan;          //判断分钟进位reg         pan1;         //判断时钟进位     reg         add;          //分钟加法按键按下计数reg         add1;         //分钟加法按键匹配计数reg         add10;        //时钟加法按键按下计数     reg         add11;        //时钟加法按键匹配计数reg         jian10;       //时钟减法按键按下计数  reg         jian11;       //时钟减法按键匹配计数  reg         jian;         //分钟减法按键按下计数reg         jian1;        //分钟减法按键匹配计数reg         [5:0]   cnt=0;          //记录当前小时数reg         [5:0]   cnt1=0;         //小时匹配数reg   		[6:0]   seg		[9:0];  //数码管reg			[3:0]	cnt_ge;         //秒钟个位reg			[3:0]	cnt_shi;        //秒钟十位reg			[3:0]	minute_ge;      //分钟个位reg			[3:0]	minute_shi;     //分钟十位reg			[3:0]	hour_ge;        //小时个位reg			[3:0]	hour_shi;       //小时十位 initial beginseg[0] = 7'h3f;	   //  0seg[1] = 7'h06;	   //  1seg[2] = 7'h5b;	   //  2seg[3] = 7'h4f;	   //  3seg[4] = 7'h66;	   //  4seg[5] = 7'h6d;	   //  5seg[6] = 7'h7d;	   //  6seg[7] = 7'h07;	   //  7seg[8] = 7'h7f;	   //  8seg[9] = 7'h6f;	   //  9end// 启动/暂停按键进行消抖debounce  U2 (.clk(clk),.rst(rst),.key(change),.key_pulse(change_pulse));debounce  U6 (.clk(clk),.rst(rst),.key(plus),.key_pulse(plus_pulse));debounce  U7 (.clk(clk),.rst(rst),.key(cut),.key_pulse(cut_pulse));// 用于分出一个1Hz的频率	divide #(.WIDTH(32),.N(12000000)) U1 ( .clk(clk),.rst_n(rst),      .clkout(clk1h));// 用于分出一个2Hz的频率divide #(.WIDTH(32),.N(6000000)) U5 ( .clk(clk),.rst_n(rst),      .clkout(clk0));//按键动作标志信号产生always @ (posedge change_pulse)begin	if(!rst==1)change_flag <= 0;elsechange_flag <= ~change_flag;endalways @ (posedge plus_pulse)begin	if(!rst==1)plus_flag <= 0;elseplus_flag <= ~plus_flag;if(change==1)beginadd<=add+1;endelse if(change==0)beginadd10<=add10+1;endendalways @ (posedge cut_pulse)begin	if(!rst==1)cut_flag <= 0;elsecut_flag <= ~cut_flag;if(change==1)beginjian<=jian+1;endelse if(change==0)beginjian10<=jian10+1;endend//60秒计时控制always @ (posedge clk1h ) beginif(cnt_shi==5 && cnt_ge==9) begincnt_shi <= 0;cnt_ge <= 0;endelse if(cnt_shi==0 && cnt_ge==0) begincnt_shi <= 0;cnt_ge <= 1;endelse if(cnt_ge==9)begincnt_ge <= 0;cnt_shi <= cnt_shi+1;endelsecnt_ge <= cnt_ge +1;end//60分钟计时与加减法模块always @ (posedge clk)beginif((cnt_ge==0)&&(cnt_shi==0)&&(pan==0))beginpan<=1;if(minute_shi==5 && minute_ge==9) beginminute_shi <= 0;minute_ge <= 0;endelse if(minute_ge==9)beginminute_ge <= 4'd0;minute_shi <= minute_shi+1;endelseminute_ge <= minute_ge +1;endelseif((cnt_ge!=0) || (cnt_shi!=0))beginpan<=0;endif((add1!=add)&&(change==1)) beginadd1<=add1+1;if(minute_shi==5 && minute_ge==9) beginminute_shi <= 0;minute_ge <= 0;endelse if(minute_ge==9)beginminute_ge <= 4'd0;minute_shi <= minute_shi+1;endelseminute_ge <= minute_ge +1;endif((jian1!=jian)&&(change==1))beginjian1<=jian1+1;if(minute_shi==0 && minute_ge==0)beginminute_ge<=9;minute_shi<=5;endelse if(minute_ge==0)beginminute_ge<=9;minute_shi<=minute_shi-1;endelseminute_ge<=minute_ge-1;endend//24小时计时与加减法模块always @ (posedge clk ) beginif ((minute_ge==0)&&(minute_shi==0)&&(pan1==0)&&(cnt_shi==0)&&(cnt_ge==0)) beginpan1<=1;if(hour_shi==2 && hour_ge==3) beginhour_shi <= 0;hour_ge <= 0;endelse if(hour_ge==9)beginhour_ge <= 4'd0;hour_shi <= hour_shi+1;endelsehour_ge <= hour_ge +1;endelseif((minute_ge!=0) || (minute_shi!=0))beginpan1<=0;endif((add11!=add10)&&(change==0))beginadd11<=add11+1;if(hour_shi==2 && hour_ge==3) beginhour_shi <= 0;hour_ge <= 0;endelse if(hour_ge==9)beginhour_ge <= 4'd0;hour_shi <= hour_shi+1;endelsehour_ge <= hour_ge +1;endif((jian11!=jian10)&&(change==0))beginjian11<=jian11+1;if(hour_shi==0 && hour_ge==0)beginhour_ge<=3;hour_shi<=2;endelse if(hour_ge==0)beginhour_ge<=9;hour_shi<=hour_shi-1;endelsehour_ge<=hour_ge-1;endend//选择显示always @ (posedge clk)beginif((change==0)&&(change2==1))beginseg_led_1<= seg[hour_ge];seg_led_2<= seg[hour_shi];endelse if((change==1)&&(change2==1))beginseg_led_1<= seg[minute_ge];seg_led_2<= seg[minute_shi];endelse if(change2==0)beginseg_led_1<= seg[cnt_ge];seg_led_2<= seg[cnt_shi];endend//整点报时always @(posedge clk0)beginled=~led;if((minute_shi==0)&&(minute_ge==0)&&(cnt_shi==0)&&(cnt_ge==0))begincnt1=2*(10*hour_shi+hour_ge);endif(cnt!=cnt1)beginrgb=~rgb;cnt<=cnt+1;endelse if(cnt==cnt1)begincnt<=0;cnt1<=0;endendendmodule

管脚分配如下

 

有疑惑或者问题欢迎一起讨论

这篇关于Verilog语言fpga小脚丫数字时钟(整点报时,调时,显示秒钟等功能)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388160

相关文章

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Android实现悬浮按钮功能

《Android实现悬浮按钮功能》在很多场景中,我们希望在应用或系统任意界面上都能看到一个小的“悬浮按钮”(FloatingButton),用来快速启动工具、展示未读信息或快捷操作,所以本文给大家介绍... 目录一、项目概述二、相关技术知识三、实现思路四、整合代码4.1 Java 代码(MainActivi

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件