HDU1003 Max Sum 最大子序列和的问题【四种算法分析+实现】

2023-11-11 06:10

本文主要是介绍HDU1003 Max Sum 最大子序列和的问题【四种算法分析+实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就拿杭电OJ上的第1003题开始吧,这题比原书要复杂一些。

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6

题意很简单,那么就开始分析了,最容易想到的方法自然是枚举,只需要枚举出所有的可能情况。

具体实现如下:

#include <stdio.h>
#define maxn 100000 + 2
int arr[maxn];int main(){int t, n, maxLeft, maxRight, maxSum, id = 1;int thisSum;scanf("%d", &t);while(t--){scanf("%d", &n);for(int i = 0; i < n; ++i)scanf("%d", &arr[i]);maxSum = arr[0];maxLeft = maxRight = 0;/*maxSubsequenceSum------O(N^3)*/for(int i = 0; i < n; ++i){for(int j = i; j < n; ++j){thisSum = 0;for(int k = i; k <= j; ++k){thisSum += arr[k];}if(thisSum > maxSum){maxSum = thisSum;maxLeft = i; maxRight = j;}}}printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1);if(t) printf("\n");}return 0;
}

结果是意料之中的超时



接下来我们再换一个效率高点的算法。其实上一个算法中第三层for循环可以去掉,让第二层表示以arr[i]为起点的子序列,就这样一直向右加下去,如果和大于maxSum,那么就更新值。实现如下:

#include <stdio.h>
#define maxn 100000 + 2
int arr[maxn]; int main(){int t, n, maxLeft, maxRight, maxSum, id = 1;int thisSum;scanf("%d", &t);while(t--){scanf("%d", &n);for(int i = 0; i < n; ++i)scanf("%d", &arr[i]);maxSum = arr[0];maxLeft = maxRight = 0;/*maxSubsequenceSum------O(N^2)*/for(int i = 0; i < n; ++i){thisSum = 0;for(int j = i; j < n; ++j){thisSum += arr[j];if(thisSum > maxSum){maxSum = thisSum;maxLeft = i;maxRight = j;}				}}printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1);if(t) printf("\n");}return 0;
}

依旧超时


只能再换效率更高算法,对于最大子序列和这个问题其实可以细分成多个子问题来求解,再将子问题的解合并,于是可以考虑下分治法,具体实现如下:

#include <stdio.h>
#define maxn 100000 + 2
int arr[maxn]; 
int t, n, maxLeft, maxRight, maxSum, id = 1;int max3(int a, int b, int c){if(a >= b && a >= c) return 1;if(b >= a && b >= c) return 2;if(c >= a && c >= b) return 3;
}int maxSubsequenceSum(int left, int right, int *l, int *r){int thisLeft, thisRight;int leftSum, rightSum, midSum, mid;int leftBorderSum, maxLeftBorderSum;int rightBorderSum, maxRightBorderSum;int ll, lr, rl, rr, ml, mr;if(left == right){*l = *r = left;return arr[left];}mid = (left + right) / 2;leftSum = maxSubsequenceSum(left, mid, &ll, &lr);rightSum = maxSubsequenceSum(mid + 1, right, &rl, &rr);leftBorderSum = 0; thisLeft = mid;maxLeftBorderSum = arr[mid];for(int i = mid; i >= left; --i){leftBorderSum += arr[i];if(leftBorderSum >= maxLeftBorderSum){maxLeftBorderSum = leftBorderSum;thisLeft = i;}}rightBorderSum = 0; thisRight = mid + 1;maxRightBorderSum = arr[mid + 1];for(int i = mid + 1; i <= right; ++i){rightBorderSum += arr[i];if(rightBorderSum > maxRightBorderSum){maxRightBorderSum = rightBorderSum;thisRight = i;}}midSum = maxLeftBorderSum + maxRightBorderSum;   int sign = max3(leftSum, midSum, rightSum);if(sign == 1){maxSum = leftSum;*l = ll;*r = lr;}else if(sign == 2){maxSum = midSum;*l = thisLeft;*r = thisRight;}else{maxSum = rightSum;*l = rl;*r = rr;}return maxSum;
}int main(){    scanf("%d", &t);while(t--){scanf("%d", &n);for(int i = 0; i < n; ++i)scanf("%d", &arr[i]);maxSum = arr[0];maxLeft = maxRight = 0;maxSubsequenceSum(0, n - 1, &maxLeft, &maxRight);printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1);if(t) printf("\n");}return 0;
}

终于AC了!


书上还介绍了一个狂拽酷炫叼炸天的O(n)算法,这里也尝试一下,再对比一下与分治法的时间消耗。改的过程真是相当得不顺利,WA了5次左右才改对,不过把数组开销都省了,真心够精简的。

#include <stdio.h>int main(){int t, n, maxLeft, maxRight, maxSum, temp;int thisLeft, thisSum;scanf("%d", &t);for(int id = 1; id <= t; ++id){scanf("%d", &n);scanf("%d", &maxSum);thisLeft = maxLeft = maxRight =  0;thisSum = maxSum;if(thisSum < 0){ thisSum = 0; thisLeft = 1; }for(int i = 1; i < n; ++i){scanf("%d", &temp);thisSum += temp;if(thisSum > maxSum){maxSum = thisSum;maxLeft = thisLeft;maxRight = i;}if(thisSum < 0){thisLeft = i + 1;thisSum = 0;}}printf("Case %d:\n%d %d %d\n", id, maxSum, maxLeft + 1, maxRight + 1);if(id != t) printf("\n");}return 0;
}

时间开销如下


呼呼,四种算法总算都实现了。实现过程虽然很受挫,但是很充实的说,结果也很让人愉快,A wonderful day~




这篇关于HDU1003 Max Sum 最大子序列和的问题【四种算法分析+实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388072

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola