解决UniAD在高版本CUDA、pytorch下运行遇到的问题

2023-11-10 07:13

本文主要是介绍解决UniAD在高版本CUDA、pytorch下运行遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

UniADhttps://github.com/OpenDriveLab/UniAD是面向行车规划集感知(目标检测与跟踪)、建图(不是像SLAM那样对环境重建的建图,而是实时全景分割图像里的道路、隔离带等行车需关注的相关物体)、和轨迹规划和占用预测等多任务模块于一体的统一大模型。官网上的安装说明是按作者使用的较低版本的CUDA11.1.1和pytorch1.9.1来的,对应的mmcv也是较低版本的1.4版,我们工作服务器上的nvidia ngc docker环境里使用的这些支持工具软件早已是较高版本的,于是想在我们自己的环境里把UniAD跑起来,安装过程中遇到一些坑,最终都一一解决了,也实测过了,UniAD完全可以正常跑在CUDA11.6+pytorch1.12.0+mmcv1.6+mmseg0.24.0+mmdet2.24+mmdet3d1.0.0rc4组成的环境下。

安装和解决问题的步骤如下:

1.拉取使用CUDA11.6的NVIDIA NGC docker镜像并创建容器作为UniAD的运行环境

2.安装pytorch和torchvision:

pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116

3.检查CUDA_HOME环境变量是否已设置,如果没有,则设置一下:

export CUDA_HOME=/usr/local/cuda

4.受CUDA和pytorch版本限制,mmcv需要安装比1.4高版本的1.6.0(关于openmmlab的mm序列框架包的安装版本对应关系参见: )
pip install mmcv-full==1.6.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html

按照下面的对应关系:

分别安装mmdet2.24.0和mmseg0.24.0

pip install mmdet==2.24.0
pip install mmsegmentation==0.24.0

下载mmdetection3d源码然后切换到v1.0.0rc4版:

git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d

git checkout v1.0.0rc4

安装支持包并从源码编译和安装mmdet3d:

pip install scipy==1.7.3
pip install scikit-image==0.20.0
#将requirements/runtime.txt里修改一下numba的版本:
numba==0.53.1
#numba==0.53.0
pip install -v -e .

安装好了支持环境,然后下载和安装UniAD:

git clone https://github.com/OpenDriveLab/UniAD.git
cd UniAD

#修改一下requirements.txt里的numpy版本然后安装相关支持包:
#numpy==1.20.0
numpy==1.22.0
pip install -r requirements.txt

#下载相关预训练权重文件
mkdir ckpts && cd ckpts
wget https://github.com/zhiqi-li/storage/releases/download/v1.0/bevformer_r101_dcn_24ep.pth
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/uniad_base_track_map.pth
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0.1/uniad_base_e2e.pth

加入NuScenes数据集已经下载好并解压存放到 ./data/下了,那么执行

./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8

运行一下试试看,最后一个参数是GPU个数,我的工作环境和作者的工作环境一样都是8张A100卡,所以照着做,如果卡少,修改这个参数,例如使用1,也是可以跑的,只是比较慢。

第一次运行上面命令可能会遇到下面的问题:

1. partially initialized module 'cv2' has no attribute '_registerMatType' (most likely due to a circular import)

这是因为环境里的opencv-python版本太高了,版本不兼容引起的,我的是4.8.1.78,查了一下网上,需要降到4.5,执行下面的命令重新安装opencv-python4.5即可:

   pip install opencv-python==4.5.4.58

2. ImportError: libGL.so.1: cannot open shared object file: No such file or directory

安装libgl即可:

     sudo apt-get update && sudo apt-get install libgl1

3. AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0)

Traceback (most recent call last):File "tools/create_data.py", line 4, in <module>from data_converter import uniad_nuscenes_converter as nuscenes_converterFile "/workspace/workspace_fychen/UniAD/tools/data_converter/uniad_nuscenes_converter.py", line 13, in <module>from mmdet3d.core.bbox.box_np_ops import points_cam2imgFile "/workspace/workspace_fychen/mmdetection3d/mmdet3d/__init__.py", line 5, in <module>import mmsegFile "/opt/conda/lib/python3.8/site-packages/mmseg/__init__.py", line 58, in <module>assert (mmcv_min_version <= mmcv_version <= mmcv_max_version), \
AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0).

这错误是python3.8/site-packages/mmseg/__init__.py抛出来的,说明mmseg和mmcv1.6.0版本不兼容,它要求安装mmcv的1.3-1.5版,说明mmseg自身版本低了,原因是开始安装的mmsegmenation版本低了,改安装mmseg0.24.0即可。其它功能框架包遇到版本问题做类似处理。

4.KeyError: 'DiceCost is already registered in Match Cost'

Traceback (most recent call last):File "./tools/test.py", line 16, in <module>from projects.mmdet3d_plugin.datasets.builder import build_dataloaderFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>from .core.bbox.match_costs import BBox3DL1Cost, DiceCostFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>from .match_cost import BBox3DL1Cost, DiceCostFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>Traceback (most recent call last):
class DiceCost(object):File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _registerFile "./tools/test.py", line 16, in <module>from projects.mmdet3d_plugin.datasets.builder import build_dataloaderFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>from .core.bbox.match_costs import BBox3DL1Cost, DiceCostFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>from .match_cost import BBox3DL1Cost, DiceCostFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>class DiceCost(object):File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _registerself._register_module(module=module, module_name=name, force=force)self._register_module(module=module, module_name=name, force=force)File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_funcFile "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_funcoutput = old_func(*args, **kwargs)File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 272, in _register_moduleraise KeyError(f'{name} is already registered '
KeyError: 'DiceCost is already registered in Match Cost''

这种类注册重复了的问题是因为UniAD的mmdet3d_plugin和我安装的mmdetection的文件python3.8/site-packages/mmdet/core/bbox/match_costs/match_cost.py里有同名的DiceCost类(UniAD作者使用的mmdetection版本较低应该没有这个问题),读mmcv里面python3.8/site-packages/mmcv/utils/registry.py的注册代码可以知道这个问题可以设置参数force=True来解决:

 @deprecated_api_warning(name_dict=dict(module_class='module'))def _register_module(self, module, module_name=None, force=False):if not inspect.isclass(module) and not inspect.isfunction(module):raise TypeError('module must be a class or a function, 'f'but got {type(module)}')if module_name is None:module_name = module.__name__if isinstance(module_name, str):module_name = [module_name]for name in module_name:if not force and name in self._module_dict:raise KeyError(f'{name} is already registered 'f'in {self.name}')self._module_dict[name] = module

为了保证UniAD代码能正确运行,允许UniAD的DiceCost类强制注册即可,也就是修改UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py里DiceCost类的装饰器语句,增加force=True参数:

@MATCH_COST.register_module(force=True)
class DiceCost(object):

5.TypeError: cannot pickle 'dict_keys' object

File "./tools/test.py", line 261, in <module>main()File "./tools/test.py", line 231, in mainoutputs = custom_multi_gpu_test(model, data_loader, args.tmpdir,File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/apis/test.py", line 88, in custom_multi_gpu_testfor i, data in enumerate(data_loader):File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 438, in __iter__return self._get_iterator()File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 384, in _get_iteratorreturn _MultiProcessingDataLoaderIter(self)File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1048, in __init__w.start()File "/opt/conda/lib/python3.8/multiprocessing/process.py", line 121, in startself._popen = self._Popen(self)File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 224, in _Popenreturn _default_context.get_context().Process._Popen(process_obj)File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 284, in _Popenreturn Popen(process_obj)File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__super().__init__(process_obj)File "/opt/conda/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__self._launch(process_obj)File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launchreduction.dump(process_obj, fp)File "/opt/conda/lib/python3.8/multiprocessing/reduction.py", line 60, in dumpForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle 'dict_keys' object

解决办法参见 如何定位TypeError: cannot pickle dict_keys object错误原因及解决NuScenes数据集在多进程并发训练或测试时出现的这个错误-CSDN博客

6.protobuf报错 TypeError: Descriptors cannot not be created directly

Traceback (most recent call last):File "./tools/test.py", line 16, in <module>from projects.mmdet3d_plugin.datasets.builder import build_dataloaderFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 5, in <module>from .datasets.pipelines import (File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/__init__.py", line 6, in <module>from .occflow_label import GenerateOccFlowLabelsFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/occflow_label.py", line 5, in <module>from projects.mmdet3d_plugin.uniad.dense_heads.occ_head_plugin import calculate_birds_eye_view_parametersFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/__init__.py", line 2, in <module>from .dense_heads import *File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/__init__.py", line 4, in <module>from .occ_head import OccHeadFile "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head.py", line 16, in <module>from .occ_head_plugin import MLP, BevFeatureSlicer, SimpleConv2d, CVT_Decoder, Bottleneck, UpsamplingAdd, \File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/__init__.py", line 1, in <module>from .metrics import *File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/metrics.py", line 10, in <module>from pytorch_lightning.metrics.metric import MetricFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/__init__.py", line 29, in <module>from pytorch_lightning.callbacks import Callback  # noqa: E402File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/__init__.py", line 25, in <module>from pytorch_lightning.callbacks.swa import StochasticWeightAveragingFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/swa.py", line 26, in <module>from pytorch_lightning.trainer.optimizers import _get_default_scheduler_configFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/__init__.py", line 18, in <module>from pytorch_lightning.trainer.trainer import TrainerFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 30, in <module>from pytorch_lightning.loggers import LightningLoggerBaseFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/__init__.py", line 18, in <module>from pytorch_lightning.loggers.tensorboard import TensorBoardLoggerFile "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/tensorboard.py", line 25, in <module>from torch.utils.tensorboard import SummaryWriterFile "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 12, in <module>from .writer import FileWriter, SummaryWriter  # noqa: F401File "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 9, in <module>from tensorboard.compat.proto.event_pb2 import SessionLogFile "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/event_pb2.py", line 17, in <module>from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_dot_summary__pb2File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/summary_pb2.py", line 17, in <module>from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__pb2File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_dot_proto_dot_resource__handle__pb2File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__shape__pb2File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_shape_pb2.py", line 36, in <module>_descriptor.FieldDescriptor(File "/opt/conda/lib/python3.8/site-packages/google/protobuf/descriptor.py", line 561, in __new___message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:1. Downgrade the protobuf package to 3.20.x or lower.2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

我的protobuf版本4.24.4太高了,降为3.20后就可以了:

       pip install protobuf==3.20

7. TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

Traceback (most recent call last):File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfgreturn obj_cls(**args)File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 78, in __init__super().__init__(*args, **kwargs)File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/nuscenes_dataset.py", line 131, in __init__super().__init__(File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/custom_3d.py", line 88, in __init__self.data_infos = self.load_annotations(open(local_path, 'rb'))File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 152, in load_annotationsdata = pickle.loads(self.file_client.get(ann_file))File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 1014, in getreturn self.client.get(filepath)File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 535, in getwith open(filepath, 'rb') as f:
TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

问题原因出现在高版本的mmdetection3d/mmdet3d/datasets/custom_3d.py里考虑了支持local_path读取文件,传入load_annotations()的就是个io句柄了:

def __init__(self,data_root,ann_file,pipeline=None,classes=None,modality=None,box_type_3d='LiDAR',filter_empty_gt=True,test_mode=False,file_client_args=dict(backend='disk')):super().__init__()self.data_root = data_rootself.ann_file = ann_fileself.test_mode = test_modeself.modality = modalityself.filter_empty_gt = filter_empty_gtself.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)self.CLASSES = self.get_classes(classes)self.file_client = mmcv.FileClient(**file_client_args)self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}# load annotationsif not hasattr(self.file_client, 'get_local_path'):with self.file_client.get_local_path(self.ann_file) as local_path:self.data_infos = self.load_annotations(open(local_path, 'rb'))else:warnings.warn('The used MMCV version does not have get_local_path. 'f'We treat the {self.ann_file} as local paths and it ''might cause errors if the path is not a local path. ''Please use MMCV>= 1.3.16 if you meet errors.')self.data_infos = self.load_annotations(self.ann_file)

根源是UniAD的UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py里

在实现load_annotations()时默认是只支持使用ann_file是字符串类型,所以这里强制修改一下mmdetection3d/mmdet3d/datasets/custom_3d.py改回使用self.data_infos = self.load_annotations(self.ann_file)即可。

8. RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed

前面的7个问题都解决后,如果NuScenes数据集是完整的且位置正确的话,运行下面的命令应该都可以运行:

./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8
./tools/uniad_dist_eval.sh ./projects/configs/stage2_e2e/base_e2e.py ./ckpts/uniad_base_e2e.pth 8

但是可能会在循环读取数据时发生超时错误而导致dataloader所在进程被杀掉:

Traceback (most recent call last):File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1134, in _try_get_datadata = self._data_queue.get(timeout=timeout)File "/opt/conda/lib/python3.8/multiprocessing/queues.py", line 107, in getif not self._poll(timeout):File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 257, in pollreturn self._poll(timeout)File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 424, in _pollr = wait([self], timeout)File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 936, in waittimeout = deadline - time.monotonic()File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler_error_if_any_worker_fails()
RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed.

查了一下,发现原因是配置文件projects/configs/stage1_track_map/base_track_map.py和projects/configs/stage2_e2e/base_e2e.py里的workers_per_gpu=8的设置对我们的服务器来说太多了,改为2后,再运行上面的命令可以顺利执行完毕。

这篇关于解决UniAD在高版本CUDA、pytorch下运行遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381148

相关文章

Nginx启动失败:端口80被占用问题的解决方案

《Nginx启动失败:端口80被占用问题的解决方案》在Linux服务器上部署Nginx时,可能会遇到Nginx启动失败的情况,尤其是错误提示bind()to0.0.0.0:80failed,这种问题通... 目录引言问题描述问题分析解决方案1. 检查占用端口 80 的进程使用 netstat 命令使用 ss

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd