Re44:数据集 GSM8K 和 论文 Training Verifiers to Solve Math Word Problems

2023-11-10 04:40

本文主要是介绍Re44:数据集 GSM8K 和 论文 Training Verifiers to Solve Math Word Problems,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:Training Verifiers to Solve Math Word Problems
GSM8K数据集原始论文

OpenAI 2021年的工作,关注解决MWP问题(具体场景是小学(grade school)数学题),训练模型关注其错误,重复尝试,直至找到正确解法。
因此本文训练verifier检测解决方案是否正确。
在小模型上,verifier可以使模型提升到与大模型靠近的程度。
数据集越大,verifier效果越好。小数据集上没用。

论文ArXiv链接:https://arxiv.org/abs/2110.14168

官方GitHub项目:openai/grade-school-math

官方博文https://openai.com/research/solving-math-word-problems

verifier这个想法当然很好,除了成本看起来就很高之外……
另外就是看论文中的暗示,这个优秀的模型效果也是靠调参调出来的啊。哎调参嘛本来就是建模的一部分,我一点都没有在酸!

文章目录

  • 1. GSM8K数据集
  • 2. verifier
  • 3. 实验结果
  • 4. 复现
    • 1. 官方GitHub项目内容整理
    • 2. 直接跑一遍GPT-2微调
    • 3. GPT-2 + verifier
  • 本文撰写过程中参考的其他网络资料

1. GSM8K数据集

含8.5K条数学题。
7.5K训练集,1K测试集

每个问题需要2-8步推理来求解。

数据集中的解法都是自然语言形式的。

在这里插入图片描述

此外还提供了一种“苏格拉底式提问”的数据(虽然在论文中压根没提这茬):

A carnival snack booth made $50 selling popcorn each day. It made three times as much selling cotton candy. For a 5-day activity, the booth has to pay $30 rent and $75 for the cost of the ingredients. How much did the booth earn for 5 days after paying the rent and the cost of ingredients?
How much did the booth make selling cotton candy each day? ** The booth made $50 x 3 = $<<50*3=150>>150 selling cotton candy each day.
How much did the booth make in a day? ** In a day, the booth made a total of $150 + $50 = $<<150+50=200>>200.
How much did the booth make in 5 days? ** In 5 days, they made a total of $200 x 5 = $<<200*5=1000>>1000.
How much did the booth have to pay? ** The booth has to pay a total of $30 + $75 = $<<30+75=105>>105.
How much did the booth earn after paying the rent and the cost of ingredients? ** Thus, the booth earned $1000 - $105 = $<<1000-105=895>>895.

质量控制是纯人工完成的,我好羡慕啊……
数据集是找人写了1000条(先用few-shot prompted 175B GPT-3 model生成seed问题),然后用Surge AI自动打标扩展,然后找人进行验证。
calculator annotation是由硬编码的逻辑和LLM联合生成的,在训练时就放在一起训练,在测试时直接用calculator(eval())重算答案(在检测到=出现后,调用calculator,计算figure 1中的红色部分左式,得到计算答案,覆盖红色部分),如果出现非法表达式将直接重新抽样
在这里插入图片描述

2. verifier

本文认为,LM的一个重要问题就在于容易因小错而产生失误(sensitivity,或者说不鲁棒),这是因为LM生成过程是autoregressive的,所以无法对之前生成的内容进行纠错。

verifier:评估模型生成解法的正确程度(token-level + 联合训练语言模型和是否正确2个目标函数)
(分类一般比生成任务简单)
(存在推理错误,但是结果正确的场景)
在训练时同时训练验证任务和语言模型任务(训练时两种数据一样多,相当于对语言模型数据的100倍上采样)
在这里插入图片描述

在测试时,让模型生成100个解决方案,选择verifier排序最高的解决方案,作为输出。
(或许这个verifier也可以被叫做,模型聚合。加强版投票吧感觉。不知道以前机器学习那边做模型聚合有没有用过这种第二阶段的验证器(或者叫排序器?打分器)哈,应该有的吧)

本文主要考虑两种解决方案:微调和验证(具体计算都用的是calculator,训练2个epoch(原因见第3节讲的figure 3))
微调:训练1个低temperature(0)的GPT-3
验证:训练一堆高temperature(0.7)的GPT-3(generator),然后给每个输出进行打分(verifier),选择分值最高的结果(generator和verifier的尺寸一样,语言模型目标一样)
在这里插入图片描述

之前的工作中,有类似做法的:

  1. (2020 SIGGRAPH MIG) Collaborative Storytelling with Large-scale Neural Language Models抽样→排序,根据人工偏好得到训练信号
  2. (2021 EMNLP Findings) Generate & Rank: A Multi-task Framework for Math Word Problems:联合训练生成和排序

本文选择不同的生成器和验证器,是为了防止生成器过拟合(但是原则上也可以一起train)

3. 实验结果

  1. GPT-3直接微调,在不同的训练集大小和不同的模型参数上,基本呈现出大力出奇迹的标准结局:
    (这么大的模型还能算平均值和标准差,有钱真好啊)
    在这里插入图片描述
  2. 直接微调GPT-3后,test@N(N次测试中至少对一次)和迭代数之间的关系:test@1基本单调增长,但在测试集损失函数上过拟合;test@100迅速下降(本文认为是过拟合)
    在这里插入图片描述
  3. 必须要先生成自然语言解释,再生成最终答案。如果直接生成最终答案,结果会从20.6%直接降到5.2%
  4. 不同模型大小上verifier的实验结果(就算是OpenAI也没钱在175B的模型上算平均值和标准差了是吧)
    在小数据集上verifier没用可能是因为过拟合
    在这里插入图片描述
  5. ablation study
    图a我不太确定,我的理解是token-level指的是将整个自然语言结果的每一个token都和生成结果算损失函数(相当于当成一个生成问题),solution-level指的是只考虑最后生成的数值是否正确(相当于当成一个分类问题)
    图b本文认为是因为模型了解语言分布有益于区别不同的生成结果
    图c的结论比较意识流,本文认为这说明verifier是模糊启发式直觉选手,而不是认认真真在做验证
    在这里插入图片描述
  6. 测试时的计算次数
    图a就是直接在测试结果中选打分最高的一项
    图b是选择排序最前的这么多测试结果,进行投票
    在这里插入图片描述7. dropout正则化是牛逼的,但是verifier更加牛逼
    residual dropout(transformer同款)因为GPT-3没有用dropout,所以本文在用dropout微调之前还加了用dropout预训练,以防数据漂移
    dropout概率是hyperparameters sweep搜出来的,牛逼吧……有钱真好啊……
    在这里插入图片描述
    这句话我是真没搞懂:Note that we increase the batch size for token-level verifiers by a factor of 4, to better handle the more difficult objective and the noise from dropout. 这是什么我不知道的理论吗?
  7. 附录B的这个超参是啥意思我也没搞懂:
    在这里插入图片描述
    超参设置:
    在这里插入图片描述
  8. verifier可视化
    在这里插入图片描述

4. 复现

1. 官方GitHub项目内容整理

没有给出具体的实验代码,只给了一些参考工具脚本(都没有经过优化,“又不是不能用.jpg”)

  1. 数据集
    用于实验的数据:https://github.com/openai/grade-school-math/blob/master/grade_school_math/data/train.jsonl和https://github.com/openai/grade-school-math/blob/master/grade_school_math/data/test.jsonl
    苏格拉底式提问的数据:https://github.com/openai/grade-school-math/blob/master/grade_school_math/data/train_socratic.jsonl和https://github.com/openai/grade-school-math/blob/master/grade_school_math/data/test_socratic.jsonl
  2. 调用calculator的示例:https://github.com/openai/grade-school-math/blob/master/grade_school_math/calculator.py
  3. https://github.com/openai/grade-school-math/blob/master/grade_school_math/dataset.py:一些实用的数据集工具脚本
    哦但是值得注意的是
  4. GPT-2微调的代码:https://github.com/openai/grade-school-math/blob/master/grade_school_math/train.py
  5. GPT-2推理的代码:https://github.com/openai/grade-school-math/blob/master/grade_school_math/sample.py

2. 直接跑一遍GPT-2微调

LLM的部分跟别的LLM其实差不多,只是GSM8K多了一个调用calculator的部分。

参考官方代码和transformers的新功能。

这个我晚些再补。

3. GPT-2 + verifier

GPT-3毕竟没有开源,所以只能拿GPT-2当代餐了。

然后这个代码也我自己写的。应该比较好写,我晚些再补。

本文撰写过程中参考的其他网络资料

  1. 【搬运】GSM8K 数据集介绍_x66ccff的博客-CSDN博客

这篇关于Re44:数据集 GSM8K 和 论文 Training Verifiers to Solve Math Word Problems的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380423

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解