快速排斥实验amp;跨立实验 判断两直线是否相交

2023-11-10 02:48

本文主要是介绍快速排斥实验amp;跨立实验 判断两直线是否相交,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

两条线段有且仅有一个公共点,且这个点不是任何一条线段的端点时,称这两条线段是严格相交的。

也就是说线段不严格相交时可以将端点作为交点,但本文不讨论不严格相交,只讨论严格相交的情况(即使它们在算法实现上差别不大)。

在判断两条线段是否相交时,我们常用快速排斥实验跟跨立实验这两种方法,快速排斥实验能很快的排除掉线段不相交的情况,但并没法成为线段相交的充要条件,在快速排斥实验之后接上跨立实验就能完全的判断两线段是否相交,但其实只用跨立实验这一种办法也能作为判断线段相交的充要条件。

 1.快速排斥实验:

假设以线段P1,P2为对角线作一矩形R,再以Q1,Q2为对角线作矩形T,当两个矩形不相交的时候两条线段肯定不相交,即线段相交的必要条件时矩形相交。


2.跨立实验:

若P1P2跨立Q1Q2,即 向量Q1P1和向量Q1P2分布向量Q1Q2的两侧,满足(P1−Q1)×(Q2−Q1)∗(P2−Q1)×(Q2−Q1)<0。
若(P1−Q1)×(Q2−Q1)∗(P2−Q1)×(Q2−Q1)=0,说明P1或P2在直线Q1Q2上,但因为已通过快速排斥试验,所以这两线段是相交的。
故上式可改写成 (P1−Q1)×(Q2−Q1)∗(P2−Q1)×(Q2−Q1)≤0
同理,若Q1Q2跨立P1P2,则要满足(Q1−P1)×(P2−P1)∗(Q2−P1)×(P2−P1)≤0
当P1P2跨立Q1Q2且Q1Q2跨立P1P2,跨立试验成功。

struct point{double x,y;
}P1,P2,Q1,Q2;
struct Edge
{point a,b;
}e[N];
double xmult(point a,point b,point c) //大于零代表a,b,c左转
{return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
bool OnSegment(point a,point b,point c)         //a,b,c共线时有效
{return c.x>=min(a.x,b.x)&&c.x<=max(a.x,b.x)&&c.y>=min(a.y,b.y)&&c.y<=max(a.y,b.y);
}bool Cross(point a,point b,point c,point d) //判断ab 与cd是否相交
{double d1,d2,d3,d4;d1=xmult(c,d,a);d2=xmult(c,d,b);d3=xmult(a,b,c);d4=xmult(a,b,d);if(d1*d2<0&&d3*d4<0)  return 1;else    if(d1==0&&OnSegment(c,d,a)) return 1;else    if(d2==0&&OnSegment(c,d,b)) return 1;else    if(d3==0&&OnSegment(a,b,c)) return 1;else    if(d4==0&&OnSegment(a,b,d)) return 1;return 0;
}




 

 

这篇关于快速排斥实验amp;跨立实验 判断两直线是否相交的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379968

相关文章

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1127 线段相交的判定

题意: 有n根木棍,每根的端点坐标分别是 px, py, qx, qy。 判断每对木棍是否相连,当他们之间有公共点时,就认为他们相连。 并且通过相连的木棍相连的木棍也是相连的。 解析: 线段相交的判定。 首先,模板中的线段相交是不判端点的,所以要加一个端点在直线上的判定; 然后,端点在直线上的判定这个函数是不判定两个端点是同一个端点的情况的,所以要加是否端点相等的判断。 最后

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p