全国5米高程DEM数据及衍生的坡度数据

2023-11-10 02:44

本文主要是介绍全国5米高程DEM数据及衍生的坡度数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。


    坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。

    坡度是地表单元陡缓的程度,用以表示斜坡的斜度,常用于标记丘陵、屋顶和道路的斜坡的陡峭程度。全国坡度分布数据是根据5米高程dem进行拼接、转换、坡度计算等处理得到的,格式为栅格,空间分辨率为10-1000米,空间参考系为wgs84或CGCS2000,空间范围覆盖全国。

      (1)百分比法

  表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下: 

                             坡度 = (高程差/水平距离)x100% 

  (2)度数法
  用度数来表示坡度,利用反三角函数计算而得,其公式如下:

                             tanα(坡度)= 高程差/水平距离  

                 通常,将坡度分为五级:
                 1级:坡度≤2度

                 2级:2<坡度≤6度
                 3级:6<坡度≤15度

                 4级:15<坡度≤25度
                 5级:坡度>25度

图片

5米DEM应用

高分辨率、高精度DEM数据在科学、工程、军事、社会经济等领域发挥着基础重要作用,特别是在地质灾害、全球变化与应对等方面,例如滑坡监测、冰川变化、海岸带淹没等。

1.地质灾害应用

地质灾害通常定义为对生命、财产和环境具有潜在风险的地质状态和过程,包括自然灾害(如地震、滑坡、火山、海啸和洪水等)与人类活动相关的灾害(如地下水抽取、矿产开采等导致的地面沉降、水污染、大气污染等)。

滑坡灾害是一种重大的地质灾害,每年造成大量人员伤亡和经济财产损失,近年来其发生频率随着气候变化和城市化的扩张而显著增加。高分辨率、高精度DEM是滑坡识别、滑坡监测、滑坡灾害分析与预测等阶段的关键数据集,可以用于茂密植被地区的滑坡现象与滑坡机制目视判读、滑坡目录制图、滑坡形变量求解、环境因子与触发因子分析等研究。

目前,高分辨率卫星遥感影像或LiDAR技术被广泛用于高地质风险区域的宏观地物覆盖、裸地DEM和地表形变获取。为了更好地融合不同观测平台的数据与模型,需要进一步结合地面实测数据(如地面三维激光扫描、地基InSAR、近景摄影测量等)和局部传感器网络开展DEM数据的验证与补充。

2.海岸带应用

根据联合国政府间气候变化专业委员会2014年发布的第5次气候变化评估报告,过去110 a间全球海平面上升了19 cm,在全球变暖大背景下,海平面上升仍呈加速趋势,预计到2100年全球海平面最大升幅为0.98 m。

海平面上升会淹没滨海低地,加剧风暴潮、洪涝、海岸侵蚀、海水入侵与土壤盐渍化等灾害,威胁沿海基础设施安全。沿海城市在城市规划和重大基础设施的设计参数制定中,需要充分考虑海平面上升等气候变化增量因素。过去二十多年,欧美国家及中国已经针对沿海地区开展了海平面上升影响评估和脆弱区划研究,根据经济社会发展程度采取防护、后退和顺应等策略应对海平面上升。

高程数据是确定海岸带地区自然灾害脆弱性的主要变量,特别是与洪水和海平面上升相关的淹没灾害,但是对于DEM高程不确定性对海平面上升评估结果的影响研究仍然较少。因此,需要了解底层高程数据质量,才能正确建模潜在影响,进而得到可靠的灾害评估结果。

  

图片

图片

    

    数字高程模型(DEM)是应用最广泛的地理信息数据之一,是进行三维空间处理和地形分析的数据基础。城市规划、交通线路规划、地质灾害防控、城区地籍监测等行业应用对DEM数据的精度提出更高的要求,需要用到分辨率更高、精度更高、更新周期更快的数据。为了更好地满足广大用户使用数据的需求,经过大量数据对比,地理遥感生态网平台现已上线5米分辨率的数字高程模型DEM数据!

这篇关于全国5米高程DEM数据及衍生的坡度数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379948

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分