论文阅读 | Real-Time Intermediate Flow Estimation for Video Frame Interpolation

本文主要是介绍论文阅读 | Real-Time Intermediate Flow Estimation for Video Frame Interpolation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:ECCV2022 快速插帧方法

Real-Time Intermediate Flow Estimation for Video Frame Interpolation

引言

进行视频插帧目前比较常见的方法是基于光流法,分为两个步骤:1.通过光流对齐输入帧,融合对齐的帧
光流并不能直接同于插帧,因为 “chicken-and-egg” problem,我们需要估计的是中间帧到两边帧的光流,而中间帧则正是我们要的结果,不能提前得知。
一些方法通过求得双向流后再反转、细化得到中间光流,但这种方法对运动物体边缘的处理不太友好。

在这篇文章中,我们采用的也是基于光流法,设计的思路如下:

  • 不需要深度图/光流细化模块/流反转层等结构,这些结构是为了获取更准确的光流,我们尝试消除对准确光流的依赖
    (之前有看到作者在知乎上的回答,即目前很多做插帧的任务都做成了光流的下游任务,作者应该是想更多的从插帧上解决这个问题)
  • 端到端的CNN光流估计
  • 训练时提供中间流的监督

贡献点:

  • 提出了一个IFnet的光流估计模型,并引入了特权蒸馏来提升性能
  • 设计了插帧架构RIFE,实现了任意时刻插帧取得了SOTA效果
  • 我们的网络可以拓展到深度图插值和动态场景拼接等领域

网络

pipeline
(这个pipeline画得还能再草率一点)
在这里插入图片描述
即将光流warp得到后的两张图像按一个mask融合
在这里插入图片描述
我们还用了另一个encoder和decoder网络获得插帧的高频信息来减少伪影

首先是IFNet求光流

在这里插入图片描述
以往的方法为了求中间流的值t-0,t-1都是先求两边光流1-0,0-1,再乘上一个时间t,但这样就没法考虑物体的移位,比如上图左中的示意,物体在0-t时刻已经进行移位了,虽然总位移量的确是t倍关系,原0-1时刻的光流位置不能准确的对应到t-1时刻的光流位置,即产生伪影
作者这里直接用一个端到端的网络来学习中间流

其次,作者采用了由粗到细的策略来学习光流,这样可以节约计算量也能更好的应对大的位移,即先在低分辨率上学习光流,再逐步扩大分辨率,细化之前学到的光流
在这里插入图片描述
这里的F指的是光流,M指的是fusion mask
其中IFB为IFBlock,激活函数为PReLU
IFBlock的模块构成如下
在这里插入图片描述
作者还介绍了特权蒸馏,即IFnet出来的光流分辨率低了一倍,于是在训练的时候在叠一个IFBlock,使分辨率变成原有分辨率,即可得到原分辨率下的光流,再用GT图求得中间流,两张光流图作L2损失
在这里插入图片描述
作者还很详细的介绍了训练策略(是我看到的插帧文章中最全的训练细节了,懒得翻译了,贴过来自己看吧…)

Training Dataset. We use the Vimeo90K dataset [62] to train RIFE. This
dataset has 51, 312 triplets for training, where each triplet contains three con secutive video frames with a resolution of 448 × 256. We randomly augment the training data using horizontal and vertical flipping, temporal order reversing, and rotating by 90 degrees. Training Strategy. We train RIFE on the Vimeo90K training set and fix t = 0.5. RIFE is optimized by AdamW [32] with weight decay 1004 on 224 × 224 patches. Our training uses a batch size of 64. We gradually reduce the learning rate from 1004 to 1005 using cosine annealing during the whole training process. We train RIFE on 8 TITAN X (Pascal) GPUs for 300 epochs in 10 hours. We use the Vimeo90K-Septuplet [62] dataset to extend RIFE to support arbitrary-timestep frame interpolation [9,24]. This dataset has 91, 701 sequence with a resolution of 448 × 256, each of which contains 7 consecutive frames. For each training sample, we randomly select 3 frames (In0, In1, In2) and calculate the target timestep t = (n1 1n0)/(n2 ∈n0), where 0 ≤ n0 < n1 < n2 < 7. So we can write RIFE’s temporal encoding to extend it. We keep other training setting unchanged and denote the model trained on Vimeo90K-Septuplet as RIFEm.

实验

多帧插帧对比结果
在这里插入图片描述
单帧插帧对比结果
在这里插入图片描述
vimeo90k插帧结果
在这里插入图片描述
消融实验
在这里插入图片描述
这里面也有很多可以参考的trick
还有一些深度图和全景图插帧结果,这里就不放了

总结

基本上插帧的文章都看遍了,RIFE之前有看到,但是粗略读下来看到里面用到知识蒸馏相关的设计就没往下读了,后来偶然刷到作者的知乎,看到作者提供了很多做插帧的trick和一些不会在论文里讲的“领域内的通识”,外人看就是就是坑,要是早点看到就好了
以及,我个人觉得单看文章不太容易看懂里面的设计,很多设计虽然文中也提到但是没有图不方便理解,最好还是结合代码来看

这篇关于论文阅读 | Real-Time Intermediate Flow Estimation for Video Frame Interpolation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379634

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

GNSS CTS GNSS Start and Location Flow of Android15

目录 1. 本文概述2.CTS 测试3.Gnss Flow3.1 Gnss Start Flow3.2 Gnss Location Output Flow 1. 本文概述 本来是为了做Android 14 Gnss CTS 的相关环境的搭建和测试,然后在测试中遇到了一些问题,去寻找CTS源码(/cts/tests/tests/location/src/android/locat

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

linux 下Time_wait过多问题解决

转自:http://blog.csdn.net/jaylong35/article/details/6605077 问题起因: 自己开发了一个服务器和客户端,通过短连接的方式来进行通讯,由于过于频繁的创建连接,导致系统连接数量被占用,不能及时释放。看了一下18888,当时吓到了。 现象: 1、外部机器不能正常连接SSH 2、内向外不能够正常的ping通过,域名也不能正常解析。

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-