布隆过滤器+CBF scala实现+代码详解

2023-11-09 17:20

本文主要是介绍布隆过滤器+CBF scala实现+代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 简介
    • BloomFilter
    • BloomFilter的简单优化
    • 改进BloomFilter
    • spark 的布隆过滤器
    • scala实现BF、CBF

简介

布隆过滤器可以说是在大数据的处理算法方面经常使用的基础算法。
在这方面我看了很多的博客,确实看到了很多很详细的解释和总结,但是都是零散的,没有很全面的在原理和实现,以及实现代码的解析等方面做的很全面的。所以我将我自己整理的东西很完整的和大家分享。

其中在实际的使用和实现方面,我会增加spark的实现,以及scala的BF和CBF的两个简单的demo。

BloomFilter

使用范围:可以用来实现数据字典,进行数据的判重,或者集合求交

原理:位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。

缺点:首先就是会存在错误率,但是为什么有错误率还是仍然被大量使用呢?这个也很简单理解,毕竟在真正的业务场景中那可以处理上十亿条数据,那么假如说有0.001的错误率那看在时间高效的优点下,还是会选择BF的。同时也不支持删除一个已经插入的关键字,因为修改关键字对应的位会牵动到其他的关键字。

上面的缺点我们提到了就是存在错误率,那么好消息是这个错误率其实是可以被开发人员根据应用场景的要求来调整的。

在这里插入图片描述
那么上面我们解释一下参数的意思:
p代表错误率,一般设置的参数0.01或者更小。
n是输入的元素的个数。
m代表bit数组长度。
然后k代表hash函数的个数。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

可见我们能得到一个规律:
那就是你想要的错误率越低,m就需要的位数越大。
然后m越大就需要的hash函数的个数越多。
仔细一想 没毛病。当然时间也会越长,但是和其他的遍历相等的方法也快了不止一点半点。

BloomFilter的简单优化

我们知道只要你使用了BloomFilter就会存在一点点的错误率,那么既然你使用布隆过滤器来加速查找和判断是否存在,那么性能很低的哈希函数不是个好选择,推荐 MurmurHash这类的高性能hash函数。

在后面的代码部分我会实现一个scala的使用MurmurHash的BloomFilter。

改进BloomFilter

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

spark 的布隆过滤器

其实spark框架下有很好的封装,所以即使你不知道原理,也可以使用。

bloomFilter(colName:String,expectedNumItems:Long,fpp:Double)
//param(使用的数据列,数据量期望,损失精度)
//损失精度越低生成的布隆数组长度越长,占用的空间越多,计算过程越长。

然后我用scala实现了一个spark中的BF

import day0215.schema_info
import org.apache.spark.sql.SparkSession/*** @Author: Braylon* @Date: 2020/2/18 17:02* @Description: BF in Spark*/
object BloomFilter {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local").appName("spark sql2").getOrCreate()val data = spark.sparkContext.textFile("D:\\idea\\projects\\scalaDemo\\src\\resources\\node.txt").map(_.split(" "))val df_ = data.map(s => schema_info(s(0).toInt, s(1).trim(), s(2).toInt))import spark.sqlContext.implicits._var df = df_.toDFdf.show()val df1 = spark.sparkContext.parallelize(Seq(Worker("Braylon",30000), Worker("Tim",1000), Worker("Jackson",20000))).toDFdf1.show(false)val rdd = spark.sparkContext.parallelize(Seq("Braylon","J.C","Neo"))// 生成bloomFilterval bf = df1.stat.bloomFilter("name",20L,0.01)val res = rdd.map(x=>(x,bf.mightContainString(x)))res.foreach(println)}
}
case class Worker(name:String,Sal:Int)

scala实现BF、CBF

package BigDataAlgorithmimport java.util.BitSetimport scala.util.hashing.MurmurHash3/*** @Author: Braylon* @Date: 2020/2/19 10:44* @Description: scala BF*/
object BloomFilter {//定义映射位数组长度val BitArr = 1 << 16//定义Bit数组val bitSet = new BitSet(BitArr)/*** 一个名为seed的值代表盐。向其提供任何随机但私有的(对您的应用而言)数据,因此哈希函数将为相同数据提供不同的结果。* 例如,使用此功能提取您的数据摘要,以检测第三人对原始数据的修改。在知道您使用的盐之前,他们几乎无法复制有效的哈希值。* final def stringHash(str: String, seed: Int): Int* Compute the hash of a string*/val seed = 2def hash(str:String):Unit = {//null是用来判断有没有这个容器,而isEmpty是有这个容器,来判断这个容器中的内容有没有东西是不是空的if (str != null && !str.isEmpty) {for (seed_tmp <- 1 to seed) bitSet.set(Math.abs(MurmurHash3.stringHash(str, seed_tmp)) % BitArr, true)}elseprintln("error input")}/*** 判断存在*/def checkIfExisted(str:String):Boolean = {def existsRecur(str: String,seed_tmp:Int):Boolean = {if (str == null && str.isEmpty) falseelse if (seed_tmp > seed) trueelse if (!bitSet.get(Math.abs(MurmurHash3.stringHash(str, seed_tmp)) % BitArr)) false/*** boolean get(int index)* 返回指定索引处的位值。*/else existsRecur(str, seed + 1)}if (str == null || str.isEmpty)falseelseexistsRecur(str, 1)}def main(args: Array[String]): Unit = {val str1 = "timeStamp"val str2 = "what are you up to"val str3 = "back to WHU as soon as possible"val str4 = "i love WHU"BloomFilter.hash(str1)BloomFilter.hash(str2)BloomFilter.hash(str3)BloomFilter.hash(str4)println(BloomFilter.checkIfExisted(str1))println(BloomFilter.checkIfExisted(str3))println(BloomFilter.checkIfExisted("neo"))println(BloomFilter.checkIfExisted("ksjdfhwiebxdkjfskf"))}
}

CBF

package BigDataAlgorithmimport scala.util.hashing.MurmurHash3/*** @Author: Braylon* @Date: 2020/2/19 12:08* @Description: scala CBF*/
object CountingBloomFilter {val totalNum = 1 << 16val CBFArr = new Array[Int](totalNum)//我们仍然使用MurmurHash,定义seedNumval seedNum = 2def hash(str:String):Unit = {if (str != null && !str.isEmpty){for (seed_tmp <- 1 to seedNum) CBFArr(Math.abs(MurmurHash3.stringHash(str, seed_tmp)) % totalNum) += 1}elseprintln("error input")}def checkIfExisted(str:String):Boolean = {def existed(str:String, seed_tmp:Int):Boolean = {if (str == null && str.isEmpty) falseelse if (seed_tmp > seedNum) trueelse if (CBFArr(Math.abs(MurmurHash3.stringHash(str, seed_tmp)) % totalNum) < 0 )  false/*** boolean get(int index)* 返回指定索引处的位值。*/else existed(str, seed_tmp + 1)}if (str==null || str.isEmpty) falseelse existed(str, 1)}def main(args: Array[String]): Unit = {val str1 = "www.baidu.com"val str2 = "Tom and Jerry"val str3 = "Tim is a good girl"val str4 = "Braylon is a good student"BloomFilter.hash(str1)BloomFilter.hash(str2)BloomFilter.hash(str3)BloomFilter.hash(str4)println(BloomFilter.checkIfExisted(str1))println(BloomFilter.checkIfExisted(str3))println(BloomFilter.checkIfExisted("neo"))println(BloomFilter.checkIfExisted("ksjdfhwiebxdkjfskf"))}
}

大家共勉~~
有不好的地方欢迎指正

这篇关于布隆过滤器+CBF scala实现+代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377513

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面