【STM32】TIM2的PWM:脉冲宽度调制

2023-11-09 13:15
文章标签 stm32 pwm 调制 宽度 脉冲 tim2

本文主要是介绍【STM32】TIM2的PWM:脉冲宽度调制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PWM是一种周期固定,脉宽可调整的输出波形。

0.通用寄存器输出

1.捕获/比较通道1的主电路--中间部分

2.捕获/比较通道的输出部分--输出

3.通用定时器输出PWM原理

PWM波周期或者频率由ARR(就是要进递增/递减的值)决定,PWM波占空比由CRRx决定。

1.定时器的PWM输出功能介绍

1)通过定时器的中断,在isr中将一个GPIO引脚电平反转,可以实现PWM输出功能【麻烦,设置多】

2)定时器附带专用的PWM输出功能,定时器那边和某一个引脚绑定,然后定时器设置好了之后内部开始+1或者-1,然后时间到了之后不是产生中断,而是直接将绑定的引脚电平反转产生PWM输出。【CPU不参与,效率高】

1.占空比:脉宽(高电平)占总周期的比例

1)可以用来调制脉冲宽度--》脉冲宽度调制

2)占空比的调节,是通过比较值与计数器的大小差距,当两者的关系改变的时,会进行电平反转。

2.PWM频率

频率越大,切换速度越快,时间段越短

3.PWM占空比和周期

4.PWM1  VS  PWM2

2.专用PWM输出的实现原理

1.比较功能

1)所谓的比较原理,设计3个计数有关的寄存器:CMP(比较),CNT(计数器),ARR(存放计数原始值)

定时器有4个输出通道,每一个通道都有一个捕获/比较寄存器,将寄存器值(ARR)和计数器值(CNT)进行比较,通过比较结果输出高低电平,实现PWM信号输出。

高低电平的1和0可以进行设置

2)在输入捕获/输出比较功能中--都要使用同一个外部引脚

3)每一个定时器只有一个计数器,但是每一个通道都有自己的捕获/比较寄存器,因此对于一个定时器来说,4路输出的PWM频率(周期)都是相同的,而不同通道的占空比可以不同。

2.相关寄存器

1.TIMx_CNT(计数器),TIMx_ARR(自动重装载寄存器),TIMx_CCRn(捕获/比较寄存器)

TIMx_CCRn:是来选择哪一条通道

2.CCMR1,CCMR2,CCER:捕获/比较模式寄存器

CCMR1:处理了通道1和通道2

CCMR2:处理了通道3和通道4

CCER:配置要什么电平才是有效的

3.CR1,CR2,PSC

CR1,CR2:使能,开关

PSC:分频功能

3.标准库中相关的API

1.TIM_TimeBaseInit

void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{uint16_t tmpcr1 = 0;/* Check the parameters */assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));tmpcr1 = TIMx->CR1;  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||(TIMx == TIM4) || (TIMx == TIM5)) {/* Select the Counter Mode */tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;}if((TIMx != TIM6) && (TIMx != TIM7)){/* Set the clock division */tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;}TIMx->CR1 = tmpcr1;/* Set the Autoreload value *///要计数的值TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;/* Set the Prescaler value *///预分频参数TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))  {/* Set the Repetition Counter value */TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;}/* Generate an update event to reload the Prescaler and the Repetition countervalues immediately *///预分频器参数的改变TIMx->EGR = TIM_PSCReloadMode_Immediate;           
}

2.TIM_OC1Init(TIM_OCnInit)

TIM_OCn--->指的使用了哪一个通道

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;/* Check the parameters */assert_param(IS_TIM_LIST8_PERIPH(TIMx));assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   /* Disable the Channel 1: Reset the CC1E Bit */TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);/* Get the TIMx CCER register value */tmpccer = TIMx->CCER;/* Get the TIMx CR2 register value */tmpcr2 =  TIMx->CR2;/* Get the TIMx CCMR1 register value */tmpccmrx = TIMx->CCMR1;/* Reset the Output Compare Mode Bits */tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));/* Select the Output Compare Mode */tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;/* Reset the Output Polarity level */tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));/* Set the Output Compare Polarity */tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;/* Set the Output State */tmpccer |= TIM_OCInitStruct->TIM_OutputState;if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||(TIMx == TIM16)|| (TIMx == TIM17)){assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));/* Reset the Output N Polarity level */tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));/* Set the Output N Polarity */tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;/* Reset the Output N State */tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));    /* Set the Output N State */tmpccer |= TIM_OCInitStruct->TIM_OutputNState;/* Reset the Output Compare and Output Compare N IDLE State */tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));/* Set the Output Idle state */tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;/* Set the Output N Idle state */tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;}/* Write to TIMx CR2 */TIMx->CR2 = tmpcr2;/* Write to TIMx CCMR1 */TIMx->CCMR1 = tmpccmrx;/* Set the Capture Compare Register value */TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */TIMx->CCER = tmpccer;
}

3.TIM_OCInitTypeDef:OC的结构体

typedef struct
{
//选择TIM的模式uint16_t TIM_OCMode;        /*!< Specifies the TIM mode.This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
//选择TIM的输出状态uint16_t TIM_OutputState;   /*!< Specifies the TIM Output Compare state.This parameter can be a value of @ref TIM_Output_Compare_state */uint16_t TIM_OutputNState;  /*!< Specifies the TIM complementary Output Compare state.This parameter can be a value of @ref TIM_Output_Compare_N_state@note This parameter is valid only for TIM1 and TIM8. */
//要进行比较的值uint16_t TIM_Pulse;         /*!< Specifies the pulse value to be loaded into the Capture Compare Register. This parameter can be a number between 0x0000 and 0xFFFF */
//输出的极性uint16_t TIM_OCPolarity;    /*!< Specifies the output polarity.This parameter can be a value of @ref TIM_Output_Compare_Polarity */uint16_t TIM_OCNPolarity;   /*!< Specifies the complementary output polarity.This parameter can be a value of @ref TIM_Output_Compare_N_Polarity@note This parameter is valid only for TIM1 and TIM8. */uint16_t TIM_OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.This parameter can be a value of @ref TIM_Output_Compare_Idle_State@note This parameter is valid only for TIM1 and TIM8. */uint16_t TIM_OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State@note This parameter is valid only for TIM1 and TIM8. */
} TIM_OCInitTypeDef;

1.TIM_OCMode:选择TIM的模式

2.TIM_OutputState:选择输出类型

选择输出有效电平类型

3.TIM_Pulse:输入要进行比较的值

4.TIM_OCPolarity:设置输出极性

4.TIM_OCnPreloadConfig

void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{uint16_t tmpccmr1 = 0;/* Check the parameters */assert_param(IS_TIM_LIST8_PERIPH(TIMx));assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));tmpccmr1 = TIMx->CCMR1;/* Reset the OC1M Bits */tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);/* Configure The Forced output Mode */tmpccmr1 |= TIM_ForcedAction;/* Write to TIMx CCMR1 register */TIMx->CCMR1 = tmpccmr1;
}

5.TIM_OC1PreloadConfig

void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{uint16_t tmpccmr1 = 0;/* Check the parameters */assert_param(IS_TIM_LIST8_PERIPH(TIMx));assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));tmpccmr1 = TIMx->CCMR1;/* Reset the OC1PE Bit */tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);/* Enable or Disable the Output Compare Preload feature */tmpccmr1 |= TIM_OCPreload;/* Write to TIMx CCMR1 register */TIMx->CCMR1 = tmpccmr1;
}

6.TIM_ClearOC1Ref

void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{uint16_t tmpccmr1 = 0;/* Check the parameters */assert_param(IS_TIM_LIST3_PERIPH(TIMx));assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));tmpccmr1 = TIMx->CCMR1;/* Reset the OC1CE Bit */tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);/* Enable or Disable the Output Compare Clear Bit */tmpccmr1 |= TIM_OCClear;/* Write to TIMx CCMR1 register */TIMx->CCMR1 = tmpccmr1;
}

7.TIM_OC1PolarityConfig

void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{uint16_t tmpccer = 0;/* Check the parameters */assert_param(IS_TIM_LIST8_PERIPH(TIMx));assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));tmpccer = TIMx->CCER;/* Set or Reset the CC1P Bit */tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);tmpccer |= TIM_OCPolarity;/* Write to TIMx CCER register */TIMx->CCER = tmpccer;
}

4.GPIO引脚和PWM的对应关系

STM32F103中文教程及参考手册.pdf · 林何/STM32F103C8 - 码云 - 开源中国 (gitee.com)

在AFIO中进行查找

没有重映像:表示默认接入的io口

完全重映像:如果使用这个则要调用函数进行声明【GPIO_PinRemapConfig】

5.TIM2的专用PWM输出编程实践

1.官方示例代码

我们使用的是TIM3,因为我们复用了GPIOA,所以要去AFIO中去查找TIM3对应的关系

#include "pwm.h"
#include "led.h"//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM1_PWM_Init(u16 arr,u16 psc)
{  GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);			// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  		//使能GPIO外设时钟使能//设置该引脚为复用输出功能,输出TIM1 CH1的PWM脉冲波形GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; 						//TIM_CH1GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  				//复用推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_TimeBaseStructure.TIM_Period = arr; 						//设置在下一个更新事件装入活动的自动重装载寄存器周期的值	 80KTIM_TimeBaseStructure.TIM_Prescaler =psc; 						//设置用来作为TIMx时钟频率除数的预分频值  不分频TIM_TimeBaseStructure.TIM_ClockDivision = 0; 					//设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;		//TIM向上计数模式TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); 				//根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; 				//选择定时器模式:TIM脉冲宽度调制模式2TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//比较输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//设置待装入捕获比较寄存器的脉冲值TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 		//输出极性:TIM输出比较极性高TIM_OC1Init(TIM1, &TIM_OCInitStructure);  						//根据TIM_OCInitStruct中指定的参数初始化外设TIMxTIM_CtrlPWMOutputs(TIM1,ENABLE);								//MOE 主输出使能	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  				//CH1预装载使能	 TIM_ARRPreloadConfig(TIM1, ENABLE); 							//使能TIMx在ARR上的预装载寄存器TIM_Cmd(TIM1, ENABLE);  										//使能TIM1
}

2.代码移植

我们先去查看我们进行操作的TIM2对应应该复用哪一个AFIO引脚

可知TIM2的通道1对于的没有重映像是PA0

#include "stm32f10x.h"                  // Device header
/**使用TIM2的Channel1,无重映射时对应PA0引脚,在原理图上对应P1.0
*/void pwm_init(void);int main(){pwm_init(); //频率是2Khreturn 0;
}void pwm_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;   //声明一个结构体变量,用来初始化GPIOTIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;//声明一个结构体变量,用来初始化定时器TIM_OCInitTypeDef TIM_OCInitStructure;//根据TIM_OCInitStruct中指定的参数初始化外设TIMx/* 开启时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);/*  配置GPIO的模式和IO口 */GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;//复用推挽输出GPIO_Init(GPIOA,&GPIO_InitStructure);		// GPA15,// time = CNT/fHz = 9000/72000000s// Fpwm = 1/T = 72000000/9000Hz = 8000Hz = 8KHz//TIM3定时器初始化TIM_TimeBaseInitStructure.TIM_Period = 9000 - 1;	   //不分频,PWM 频率=72000/900=8Khz//设置自动重装载寄存器周期的值TIM_TimeBaseInitStructure.TIM_Prescaler = 0;//设置用来作为TIMx时钟频率预分频值,100Khz计数频率TIM_TimeBaseInitStructure.TIM_ClockDivision = 0;//设置时钟分割:TDTS = Tck_timTIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//TIM向上计数模式TIM_TimeBaseInit(TIM2, & TIM_TimeBaseInitStructure);// 将TIM2的输出引脚进行fll remap到PA15,也就是P3.7//GPIO_PinRemapConfig(GPIO_FullRemap_TIM2, ENABLE);//PWM初始化	  //根据TIM_OCInitStruct中指定的参数初始化外设TIMxTIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;//PWM输出使能//TIM_OCInitStructure.TIM_Pulse = 4500 - 1;//TIM_Pulse:设置占空比【占了1/3==3000/9000】TIM_OCInitStructure.TIM_Pulse = 3000 - 1;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OC1Init(TIM2,&TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);TIM_Cmd(TIM2,ENABLE);//使能或者失能TIMx外设
}

这篇关于【STM32】TIM2的PWM:脉冲宽度调制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376318

相关文章

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

Weex入门教程之4,获取当前全局环境变量和配置信息(屏幕高度、宽度等)

$getConfig() 获取当前全局环境变量和配置信息。 Returns: config (object): 配置对象;bundleUrl (string): bundle 的 url;debug (boolean): 是否是调试模式;env (object): 环境对象; weexVersion (string): Weex sdk 版本;appName (string): 应用名字;

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品

STM32的使用方法一

注:我采用的是STM32F103RC芯片、相应的电路图和STM32CubeIDE软件这是在STM32CubeIDE软件定义芯片后,所给的必要的代码逻辑,加上了注释 #include "main.h"/* Private variables ---------------------------------------------------------*//* Private function

STM32 HAL CAN通讯 实操

1、简介 相比于串口通讯,对于刚接触CAN通讯的小白来说,CAN通讯相对复杂,看各种视频、帖子理论,总是一知半解。本次通过傻瓜式操作,先实现CAN通讯的交互,以提高小白的信心,也便于自己复习观看。本次以STM32CubeMX进行初始化配置,通过Keil 5软件进行软件设计,通过CAN盒实现进行数据的交互。该流程实际以STM32F0、F1、F3、F4、F7实测好用(理论上都适用),这三种型号单片机