NLP实战学习(1):keras+LSTM实现中文新闻标题分类

2023-11-09 12:20

本文主要是介绍NLP实战学习(1):keras+LSTM实现中文新闻标题分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集来源:https://github.com/aceimnorstuvwxz/toutiao-text-classfication-dataset
共382688条15个分类的新闻。
参考代码:https://blog.csdn.net/weixin_42608414/article/details/89856566

处理数据:
每行为一条数据,以_!_分割的个字段,从前往后分别是 新闻ID,分类code,分类名称,新闻字符串(仅含标题),新闻关键词

6552431613437805063_!_102_!_news_entertainment_!_谢娜为李浩菲澄清网络谣言,之后她的两个行为给自己加分_!_佟丽娅,网络谣言,快乐大本营,李浩菲,谢娜,观众们
共15个分类
100 民生 故事 news_story
101 文化 文化 news_culture
102 娱乐 娱乐 news_entertainment
103 体育 体育 news_sports
104 财经 财经 news_finance
106 房产 房产 news_house
107 汽车 汽车 news_car
108 教育 教育 news_edu 
109 科技 科技 news_tech
110 军事 军事 news_military
112 旅游 旅游 news_travel
113 国际 国际 news_world
114 证券 股票 stock
115 农业 三农 news_agriculture
116 电竞 游戏 news_game

对新闻进行分词并且去除停用词(停用词表),我们将处理好的标签和新闻数据存入new.csv文件,方便之后使用。

import csv
import os
import jieba
import restopwords = [i.strip() for i in open('./data/cn_stop_words.txt',"r", encoding="utf-8").readlines()]def pretty_cut(sentence):cut_list = jieba.lcut(''.join(re.findall('[\u4e00-\u9fa5]', sentence)), cut_all=True)for i in range(len(cut_list) - 1, -1, -1):if cut_list[i] in stopwords:del cut_list[i]return cut_listf = open ("./data/toutiao_cat_data.txt", "r", encoding="utf-8")
lines = f.readlines()
f.close()
with open(os.path.join("./data/news.csv"), "w", encoding="utf-8", newline='') as g:writer = csv.writer(g)writer.writerow(["label", "news"])for line in lines:x = line.strip(" ")x = line.strip("\n")y = x.split("_!_")z = " ".join(y)cut_y = " ".join(pretty_cut(z))writer.writerow([y[2],cut_y])

读取处理好的数据并随机查看:

import pandas as pd
df = pd.read_csv('./data/news.csv', delimiter=",",names=['label','news'])#将逗号分隔值(csv)文件读取到DataFrame中
print("数据总量: %d ." % len(df))
df.sample(10)#对数据集进行抽样查看

在这里插入图片描述
查看并清洗空值

print("在 labek 列中总共有 %d 个空值." % df['label'].isnull().sum())#查看label列的空值
print("在 news 列中总共有 %d 个空值." % df['news'].isnull().sum())
df[df.isnull().values==True]#isnull返回一个布尔数组
df = df[pd.notnull(df['news'])]#保留非null的news

在这里插入图片描述
分别提取label和news:

d = {'label':df['label'].value_counts().index, 'count': df['label'].value_counts()}#使用字典方法创建dataframe
df_label = pd.DataFrame(data=d).reset_index(drop=True)#数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。
print(df_label)

在这里插入图片描述

输出柱状图查看

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpllabel = [i for i in df_label["label"]]
count = [int(i) for i in df_label["count"]]  
labels = label[0:-1]
count = count[0:-1]
fig = plt.figure()
plt.figure(figsize=(20,15),dpi=70)
plt.bar(labels,count,0.9,color="green")
plt.xlabel("label")
plt.ylabel("count")
plt.show() 

在这里插入图片描述

将label类转换成id

df['label_id'] = df['label'].factorize()[0]
label_id_df = df[['label', 'label_id']].drop_duplicates().sort_values('label_id').reset_index(drop=True)
label_to_id = dict(label_id_df.values)
id_to_label = dict(label_id_df[['label_id', 'label']].values)
print(df.sample(10))

在这里插入图片描述

LSTM建模

  • 将cut_review数据进行向量化处理,我们要将每条cut_review转换成一个整数序列的向量
  • 设置最频繁使用的50000个词
  • 设置每条 cut_review最大的词语数为250个(超过的将会被截去,不足的将会被补0)
from keras.preprocessing.text import Tokenizer
MAX_NB_WORDS = 50000 # 设置最频繁使用的50000个词
MAX_SEQUENCE_LENGTH = 250  # 每条cut_news最大的长度
EMBEDDING_DIM = 100 # 设置Embeddingceng层的维度
#num_words: 保留的最大词数,根据词频计算,保留前num_word - 1个
tokenizer = Tokenizer(num_words=MAX_NB_WORDS, filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~', lower=True)
tokenizer.fit_on_texts(df['news'].values)
word_index = tokenizer.word_index
print('共有 %s 个不相同的词语.' % len(word_index))from keras.preprocessing.sequence import pad_sequences
X = tokenizer.texts_to_sequences(df['news'].values)
#经过上一步操作后,X为整数构成的两层嵌套list
X = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH)
#经过上步操作后,此时X变成了numpy.ndarray
#多类标签的onehot展开
Y = pd.get_dummies(df['label_id']).valuesfrom sklearn.model_selection import train_test_split
#拆分训练集和测试集,X为被划分样本的特征集,Y为被划分样本的标签
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.10, random_state = 42)import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_length=X.shape[1]))
model.add(tf.keras.layers.SpatialDropout1D(0.2))#dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度全部置零
model.add(tf.keras.layers.LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(tf.keras.layers.Dense(16, activation='softmax'))#输出层包含15个分类的全连接层,激活函数设置为softmax
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())

开始训练:设置5个训练周期,batch_size=64

from keras.callbacks import EarlyStopping
epochs = 5
batch_size = 64 #指定梯度下降时每个batch包含的样本数
#callbacks(list),其中元素是keras.callbacks.Callback的对象。这个list的回调函数将在训练过程中的适当时机被调用
#validation_split指定训练集中百分之十的数据作为验证集
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size,validation_split=0.1,callbacks=[EarlyStopping(monitor='val_loss', patience=3, min_delta=0.0001)])
model.save(r'./model.h5')#保存模型

查看loss和acc曲线:

def plot_graphs(history, string):plt.plot(history.history[string])plt.plot(history.history['val_' + string])plt.xlabel("Epochs")plt.ylabel(string)plt.legend([string, 'val_' + string])plt.show()plot_graphs(history, "accuracy")
plot_graphs(history, "loss")

在这里插入图片描述
预测两条新闻:

#预测两条新闻
def Predict(text):txt = pretty_cut(text)seq = tokenizer.texts_to_sequences(txt)padded = pad_sequences(seq, maxlen=MAX_SEQUENCE_LENGTH)pred = model.predict(padded)label_id= pred.argmax(axis=1)[0]print(text + " : " + label_id_df[label_id_df.label_id==label_id]['label'].values[0])
Predict("腾讯发布“00后画像报告” 颠覆我们对这一代的认知 00后,00后画像报告,腾讯,大数据,腾讯QQ")
#腾讯发布“00后画像报告” 颠覆我们对这一代的认知 00后,00后画像报告,腾讯,大数据,腾讯QQ : news_tech
Predict("教师招聘重要考点备考之中国古代教育专题 有教无类,孔子,九品中正制,科举制,察举制")
#教师招聘重要考点备考之中国古代教育专题 有教无类,孔子,九品中正制,科举制,察举制 : news_edu

在测试集上做预测:

#预测测试集
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
y_pred = model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
Y_test=np.argmax(Y_test, axis=1)#将one-hot编码转换为整数
print('accuracy %s' % accuracy_score(y_pred, Y_test))
print(classification_report(Y_test, y_pred,target_names=[str(w) for w in labels]))

在这里插入图片描述
完整代码和数据可查看

这篇关于NLP实战学习(1):keras+LSTM实现中文新闻标题分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376060

相关文章

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体