基于Xen的IO模型进一步分析“黑色0.1秒”问题

2023-11-09 09:48

本文主要是介绍基于Xen的IO模型进一步分析“黑色0.1秒”问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在发现云服务器读取OCS缓存的“黑色0.1秒”是发生在socket读取数据时,而且是发生在读取开始的字节,甚至在socket写数据时(比如写入缓存key)也会出现超过50ms的情况,我们的好奇心被激发到一个新的高度。

  根据我们的实测,在云服务器上创建一个新的TCP连接通常也不过3ms左右。在黑色0.1秒期间,TCP包已经到达网卡,从网卡读到内存中竟然超过100ms,这太不可思议了!后来想想,如果.Net或Windows存在这样的问题,那微软就不是全球第一大软件公司,而是全球第一大忽悠公司,这个可能性真的非常非常小。

  所以,我们觉得“黑色0.1秒”问题最大的怀疑对象依然是阿里云的Xen虚拟机。再加上之前对黑色n秒(n大于1)问题的分析,最大的怀疑对象也是Xen。如果真的是Xen的问题,那就不仅仅是阿里云的问题,这让我们的好奇心更上了一层楼。

  既然“黑色0.1秒”发生在Xen的网络IO层面,那我们还等什么,赶紧去了解Xen的IO虚拟化机制!

  通过Google很快搜索到一篇关于Xen的重要论文——Diagnosing Performance Overheads in the Xen Virtual Machine Environment:

Diagnosing Performance Overheads in the Xen Virtual Machine Environment

  这篇论文的“3.1 Xen”第2段文字专门讲到了Xen的IO模型:

3.1 Xen

The latest version of the Xen architecture introduces a new I/O model, where special privileged virtual machines called driver domains own specific hardware devices and run their I/O device drivers. All other domains (guest domains in Xen terminology) run a simple device driver that communicates via the device channel mechanism with the driver domain to access the real hardware devices. Driver domains directly access hardware devices that they own; however, interrupts from these devices are first handled by the VMM which then notifies the corresponding driver domain through virtual interrupts delivered over the event mechanism. The guest domain exchanges service requests and responses with the driver domain over an I/O descriptor ring in the device channel. An asynchronous inter-domain event mechanism is used to send notification of queued messages. To support high-performance devices, references to page-sized buffers are transferred over the I/O descriptor ring rather than actual I/O data (the latter would require copying). When data is sent by the guest domain, Xen uses a sharing mechanism where the guest domain permits the driver domain to map the page with the data and pin it for DMA by the device. When data is sent by the driver domain to the guest domain, Xen uses a page-remapping mechanism which maps the page with the data into the guest domain in exchange for an unused page provided by the guest domain.

  虚拟机的世界果然不一样。原来在Xen中,每一个物理设备都有一个专门的特权虚拟机(driver domain)在管理,其他虚拟机(guest domain,云服务器就运行于guest domain)访问物理设备都要通过对应的driver domain。driver domain上运行着直接可以访问物理设备的驱动程序;而guest domain中的驱动程序相当于只是一个中介,它通过设备信道机制(device channel mechanism)与driver domain进行通信,来完成物理设备的访问操作(见下图,来自这个PPT——Diagnosing Performance Overheads in the Xen Virtual Machine Environment)。(关键点1:云服务器中的网络IO操作最终是由driver domain完成的

Xen IO模型

  而来自物理设备的中断(interrupt)首先由VMM(Virtual Machine Monitor)处理,然后基于事件机制,通过相应的虚拟中断通知相应的driver domain(关键点2:当网卡收到包时,中断首先是由VMM处理的,然后发给Driver Domain)。关于这一点,在该论文中的6.1.1节中也提到了:

For each packet received, the network device raises a physical interrupt which is first handled in Xen, and then the appropriate “event” is delivered to the correct driver domain through a virtual interrupt mechanism.

  当driver domain将来自物理设备的数据(比如网卡接收到的网络包)发给guest domain时,Xen会使用page-remapping(内存页重映射)机制。driver domain会先将数据从物理设备读取到内存中,然后将这部分内存页与guest domain中的未使用内存页进行交换,然后guest domain直接读取这部分内存页,有点偷梁换柱的味道(关键点3:当socket读取数据时,会进行driver domain与guest domain的内存页重映射操作)。关于这一点,在该论文的6.1.2节占也提到到了:

For each page of network data received, the page is remapped into the guest domain and the driver domain acquires a replacement page from the guest.

  再来看看“黑色0.1秒”期间的情况。Wireshark的抓包数据显示,当时来自OCS的TCP包已经到达guest domain:

  这说明了什么呢?先看一张更详细的Xen I/O架构图(图片来自[pdf]Xen I/O Overview):

Xen IO架构图

  我们推断,当时TCP包已经到达上图中的Netfront——guest domain中的网卡。也就是说物理网卡收到了网络包,并发出了中断;中断被VMM处理并发给了driver domain,driver domain已经将网卡中的数据读取到内存中;并且已经完成了与guest domain的page-remapping。socket读取数据时,实际就是在读这块从drvier domain的remap过来的内存页,就在读的过程中发生了“黑色0.1秒”。

  再看一张更详细的图(图片来自Optimizing Network Virtualization in Xen):

Xen网络模型

  在上图片中,“黑色0.1秒”就发生在guest domain从Hypervisor Page Flipping中读取package data。 

  通过这次分析,我们觉得问题可能发生在guest domain从remap过来的内存页中读取数据时。在这个读的过程中,不仅涉及内存,还要涉及CPU——CPU执行的指令情况,CPU的缓存,CPU与内存之间的距离。这是一个更复杂的问题,目前我们没有足够的知识,也没有足够的参考资料进行分析。只能把问题留在这里,期待有经验的朋友提供线索。

这篇关于基于Xen的IO模型进一步分析“黑色0.1秒”问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375385

相关文章

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas