Java实现之马踏棋盘算法

2023-11-09 05:10
文章标签 java 算法 实现 棋盘 之马

本文主要是介绍Java实现之马踏棋盘算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.问题引入

1.问题引入

1)马踏棋盘算法也被称为骑士周游问题

2)将马随机放在国际象棋的8×8棋盘,Board[0~~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格

 二.马踏棋盘算法

1.基本介绍

1)马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。
2)如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的回溯.......,
3)分析第一种方式的问题,并使用贪心算法(greedyalgorithm)进行优化。解决马踏棋盘问题.

2.解决思路

1.创建棋盘chessBoard ,是一个二维数组

2.将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置并放入到一个集合中(ArrayList),最多有8个位置,每走一步,就使用step+1

3.遍历ArrayList中存放的所有位置,看看哪个可以走通,如果走通,就继续,走不通,就回溯.

4.判断马儿是否完成了任务,使用step和应该走的步数比较,如果没有达到数量,则表示没有完成任务,将整个棋盘置0

注意:马儿不同的走法〈策略),会得到不同的结果,效率也会有影响(优化)

3.代码实现

public class HorseChessBoard {public static int X;  //棋盘的列数public static int Y;  //棋盘的行数public static boolean[] isVisted;//标记棋盘的各个位置是否被访问过了public static boolean isFinshed; //表示所有位置都被访问过了public static void main(String[] args) {X = 8;Y = 8;isVisted = new boolean[X * Y];int x = 1, y = 1;int[][] chessBoard = new int[X][Y];travelChessBoard(chessBoard, x - 1, y - 1, 1);for (int[] ints : chessBoard) {System.out.println(Arrays.toString(ints));}}/*** 完成其实周游问题的算法** @param chessBoard 棋盘* @param row        马儿当前在哪一行* @param column     马儿当前在哪一列* @param step       当前在第几步*/public static void travelChessBoard(int[][] chessBoard, int row, int column, int step) {chessBoard[row][column] = step;isVisted[row * X + column] = true; //标记位置已经被访问//获取当前位置可以走的位置ArrayList<Point> next = next(new Point(column, row));while (!next.isEmpty()) {Point point = next.remove(0);  //取出下一个可以访问的结点//判断此点是否访问过if (!isVisted[point.y * X + point.x]) {//没有访问过travelChessBoard(chessBoard, point.y, point.x, step + 1);}}//.判断马儿是否完成了任务,使用step和应该走的步数比较,// 如果没有达到数量,则表示没有完成任务,将整个棋盘置0if (step < X * Y && !isFinshed) {chessBoard[row][column] = 0;isVisted[row * X + column] = false;} else {isFinshed = true;}}public static ArrayList<Point> next(Point curPoint) {ArrayList<Point> points = new ArrayList<>();Point point = new Point();if ((point.x = curPoint.x - 2) >= 0 && (point.y = curPoint.y - 1) >= 0) {//5points.add(new Point(point));}if ((point.x = curPoint.x - 1) >= 0 && (point.y = curPoint.y - 2) >= 0) {//6points.add(new Point(point));}if ((point.x = curPoint.x + 1) < X && (point.y = curPoint.y - 2) >= 0) {//7points.add(new Point(point));}if ((point.x = curPoint.x + 2) < X && (point.y = curPoint.y - 1) >= 0) {//0points.add(new Point(point));}if ((point.x = curPoint.x + 2) < X && (point.y = curPoint.y + 1) < Y) {//1points.add(new Point(point));}if ((point.x = curPoint.x + 1) < X && (point.y = curPoint.y + 2) < Y) {//2points.add(new Point(point));}if ((point.x = curPoint.x - 1) >= 0 && (point.y = curPoint.y + 2) < Y) {//3points.add(new Point(point));}if ((point.x = curPoint.x - 2) >= 0 && (point.y = curPoint.y + 1) < Y) {//4points.add(new Point(point));}return points;}}

打印结果:

[1, 8, 11, 16, 3, 18, 13, 64]
[10, 27, 2, 7, 12, 15, 4, 19]
[53, 24, 9, 28, 17, 6, 63, 14]
[26, 39, 52, 23, 62, 29, 20, 5]
[43, 54, 25, 38, 51, 22, 33, 30]
[40, 57, 42, 61, 32, 35, 48, 21]
[55, 44, 59, 50, 37, 46, 31, 34]
[58, 41, 56, 45, 60, 49, 36, 47]

4.代码优化

马儿不同的走法〈策略),会得到不同的结果,效率也会有影响(优化)

使用贪心算法对原来的算法优化
1。我们获取当前位置,可以走的下一个位置的集合//获取当前位置可以走的下一个位置的集合
ArrayList<Point> ps= next(new point(column, row));
⒉我们斋要对ps 中所有的Point 的下一步的所有集合的数目,进行非递减排序,就ok ,

public class HorseChessBoard {public static int X;  //棋盘的列数public static int Y;  //棋盘的行数public static boolean[] isVisted;//标记棋盘的各个位置是否被访问过了public static boolean isFinshed; //表示所有位置都被访问过了public static void main(String[] args) {X = 8;Y = 8;isVisted = new boolean[X * Y];int x = 1, y = 1;int[][] chessBoard = new int[X][Y];travelChessBoard(chessBoard, x - 1, y - 1, 1);for (int[] ints : chessBoard) {System.out.println(Arrays.toString(ints));}}/*** 完成其实周游问题的算法** @param chessBoard 棋盘* @param row        马儿当前在哪一行* @param column     马儿当前在哪一列* @param step       当前在第几步*/public static void travelChessBoard(int[][] chessBoard, int row, int column, int step) {chessBoard[row][column] = step;isVisted[row * X + column] = true; //标记位置已经被访问//获取当前位置可以走的位置ArrayList<Point> next = next(new Point(column, row));//对next进行排序,排序的规则是next的下一个的数目sort(next);while (!next.isEmpty()) {Point point = next.remove(0);  //取出下一个可以访问的结点//判断此点是否访问过if (!isVisted[point.y * X + point.x]) {//没有访问过travelChessBoard(chessBoard, point.y, point.x, step + 1);}}//.判断马儿是否完成了任务,使用step和应该走的步数比较,// 如果没有达到数量,则表示没有完成任务,将整个棋盘置0if (step < X * Y && !isFinshed) {chessBoard[row][column] = 0;isVisted[row * X + column] = false;} else {isFinshed = true;}}public static ArrayList<Point> next(Point curPoint) {ArrayList<Point> points = new ArrayList<>();Point point = new Point();if ((point.x = curPoint.x - 2) >= 0 && (point.y = curPoint.y - 1) >= 0) {//5points.add(new Point(point));}if ((point.x = curPoint.x - 1) >= 0 && (point.y = curPoint.y - 2) >= 0) {//6points.add(new Point(point));}if ((point.x = curPoint.x + 1) < X && (point.y = curPoint.y - 2) >= 0) {//7points.add(new Point(point));}if ((point.x = curPoint.x + 2) < X && (point.y = curPoint.y - 1) >= 0) {//0points.add(new Point(point));}if ((point.x = curPoint.x + 2) < X && (point.y = curPoint.y + 1) < Y) {//1points.add(new Point(point));}if ((point.x = curPoint.x + 1) < X && (point.y = curPoint.y + 2) < Y) {//2points.add(new Point(point));}if ((point.x = curPoint.x - 1) >= 0 && (point.y = curPoint.y + 2) < Y) {//3points.add(new Point(point));}if ((point.x = curPoint.x - 2) >= 0 && (point.y = curPoint.y + 1) < Y) {//4points.add(new Point(point));}return points;}//根据当前这一步的下一步的选择位置,进行排序public static void sort(ArrayList<Point> next){next.sort(new Comparator<Point>() {@Overridepublic int compare(Point o1, Point o2) {ArrayList<Point> next1 = next(o1);ArrayList<Point> next2 = next(o2);return next1.size()-next2.size();}});}}

这篇关于Java实现之马踏棋盘算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374138

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与