Python机器学习之相异性度量

2023-11-09 01:40

本文主要是介绍Python机器学习之相异性度量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

相似性和相异性是机器学习中重要的概念,因为它们被许多数据挖掘技术所采用,比如常见的聚类、最近邻分类和异常检测等。在很多情况下,一旦我们计算出了特征向量的相似性或相异性,我们就不在需要原始数据了。这类方法通常将数据变换到相似性(相异性)空间,然后在做数据分析。

2 定义

  • 相似度(similarity): 两个对象相似程度的数值度量,两个对象越相似,它们的相似度越高;通常取值为非负的,通常介于[0,1]之间。
  • 相异度(disimilarity): 两个对象差异程度的数值度量,两个对象越相似,值越低,通常取值为非负的,最小相异度为0,上界不确定。通常使用术语距离(distance)用作相异性的同义词,距离常常用来表示特定类型的相异度。 本文重点介绍常见的相异度计量函数。

3 欧式距离

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。其计算公式如下:
请添加图片描述
代码如下:

import numpy as np
from dissimilarity__utils import *def test_euclidean():eucl = lambda x, y: np.sum((x - y)**2, axis=1)**0.5x = np.array([0, 0])dA = eucl(x, yA)dB = eucl(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'euclidean_distance', save=True)

其中 yA,yB的取值在 dissimilarity_utils里定义,如下:

r = 1
np.random.seed(123456)
y1A = np.random.uniform(-r, r, 8)
y2A = np.random.uniform(-r, r, 8)
yA = np.array([y1A, y2A]).T
M, N = 32j, 32j
s, t = np.mgrid[-r:r:N*8, -r:r:M*8]
yB = np.array([s.ravel(), t.ravel()]).T

上述代码运行结果如下:
请添加图片描述

4 曼哈顿距离

曼哈顿距离的计算公式如下:
在这里插入图片描述
代码实现如下:

def test_manhattan():manh = lambda x, y: np.sum(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = manh(x, yA)dB = manh(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'manhattan_distance', save=True)

上述代码运行结果如下:
请添加图片描述

5 切比雪夫距离

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走 试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_chebyshev():cheb = lambda x, y: np.max(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = cheb(x, yA)dB = cheb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'chebyshev_distance', save=True)

上述代码运行结果如下:
请添加图片描述

6 闵可夫斯基距离

闵氏距离不是一种距离,而是一组距离的定义。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_minkowski():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])p = 2 ** -1dA = mink(x, yA, p)dB = mink(x, yB, p).reshape(s.shape)plotDist(x, dA, dB, 'minkowski_distance_A', ctitle=r'$p=2^{0}{2}{1}={3}$'.format('{', '}', -1, p), save=True)

上述代码运行结果如下:
请添加图片描述
我们可以设置不同的p值,进而来对比不同p值下的结果图,代码如下:

def test_minkowski_multi():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])fig, axes = plt.subplots(2, 4, sharex=True, sharey=True)for j, axs in enumerate(axes):for i, ax in enumerate(axs):index = i + 4 * jexp = index - 3pi = 2 ** expd = mink(x, yB, pi).reshape(s.shape)plotContour(ax, d,r'$p=2^{0}{2}{1}={3}$'.format('{', '}', exp, pi),fsize=8)figname = 'minkowski_distance_B'fig.suptitle(' '.join([e.capitalize() for e in figname.split('_')]))fig.savefig('_output/similarity_{}.png'.format(figname), bbox_inches='tight')

运行结果如下:
请添加图片描述

7 堪培拉距离

堪培拉距离可以是曼哈顿距离的加权版本,其计算公式如下:
在这里插入图片描述
代码实现如下:

def canb(x, y):num = np.absolute(x - y)den = np.absolute(x) + np.absolute(y)return np.sum(num/den, axis = 1)def test_canberra():x = np.array([0.25, 0.25])dA = canb(x, yA)dB = canb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'canberra_distance', save=True)

上述代码运行结果如下:
请添加图片描述

8 夹角余弦距离

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。其计算公式如下:
在这里插入图片描述
代码实现如下:

def coss(x, y):if x.ndim == 1:x = x[np.newaxis]num = np.sum(x*y, axis=1)den = np.sum(x**2, axis = 1)**0.5den = den*np.sum(y**2, axis = 1)**0.5return 1 - num/dendef test_cosine():x = np.array([1e-7, 1e-7])dA = coss(x, yA)dB = coss(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'cosine_distance', save=True)

上述代码运行结果如下:

请添加图片描述

9 总结

本文重点介绍了机器学习领域中特征向量的相似性和相异性的计算公式,并给出了常见的距离计算公式和代码实现,同时给出了不同距离的图示,方便童鞋们直观的进行理解。

您学废了嘛?

10 附录

本文参考链接如下:

链接一

链接二

关注公众号《AI算法之道》,获取更多AI算法资讯。

在这里插入图片描述



注: 完整代码,关注公众号,后台回复距离 , 即可获取。

这篇关于Python机器学习之相异性度量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373474

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模