Python机器学习之相异性度量

2023-11-09 01:40

本文主要是介绍Python机器学习之相异性度量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

相似性和相异性是机器学习中重要的概念,因为它们被许多数据挖掘技术所采用,比如常见的聚类、最近邻分类和异常检测等。在很多情况下,一旦我们计算出了特征向量的相似性或相异性,我们就不在需要原始数据了。这类方法通常将数据变换到相似性(相异性)空间,然后在做数据分析。

2 定义

  • 相似度(similarity): 两个对象相似程度的数值度量,两个对象越相似,它们的相似度越高;通常取值为非负的,通常介于[0,1]之间。
  • 相异度(disimilarity): 两个对象差异程度的数值度量,两个对象越相似,值越低,通常取值为非负的,最小相异度为0,上界不确定。通常使用术语距离(distance)用作相异性的同义词,距离常常用来表示特定类型的相异度。 本文重点介绍常见的相异度计量函数。

3 欧式距离

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。其计算公式如下:
请添加图片描述
代码如下:

import numpy as np
from dissimilarity__utils import *def test_euclidean():eucl = lambda x, y: np.sum((x - y)**2, axis=1)**0.5x = np.array([0, 0])dA = eucl(x, yA)dB = eucl(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'euclidean_distance', save=True)

其中 yA,yB的取值在 dissimilarity_utils里定义,如下:

r = 1
np.random.seed(123456)
y1A = np.random.uniform(-r, r, 8)
y2A = np.random.uniform(-r, r, 8)
yA = np.array([y1A, y2A]).T
M, N = 32j, 32j
s, t = np.mgrid[-r:r:N*8, -r:r:M*8]
yB = np.array([s.ravel(), t.ravel()]).T

上述代码运行结果如下:
请添加图片描述

4 曼哈顿距离

曼哈顿距离的计算公式如下:
在这里插入图片描述
代码实现如下:

def test_manhattan():manh = lambda x, y: np.sum(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = manh(x, yA)dB = manh(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'manhattan_distance', save=True)

上述代码运行结果如下:
请添加图片描述

5 切比雪夫距离

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走 试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_chebyshev():cheb = lambda x, y: np.max(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = cheb(x, yA)dB = cheb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'chebyshev_distance', save=True)

上述代码运行结果如下:
请添加图片描述

6 闵可夫斯基距离

闵氏距离不是一种距离,而是一组距离的定义。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_minkowski():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])p = 2 ** -1dA = mink(x, yA, p)dB = mink(x, yB, p).reshape(s.shape)plotDist(x, dA, dB, 'minkowski_distance_A', ctitle=r'$p=2^{0}{2}{1}={3}$'.format('{', '}', -1, p), save=True)

上述代码运行结果如下:
请添加图片描述
我们可以设置不同的p值,进而来对比不同p值下的结果图,代码如下:

def test_minkowski_multi():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])fig, axes = plt.subplots(2, 4, sharex=True, sharey=True)for j, axs in enumerate(axes):for i, ax in enumerate(axs):index = i + 4 * jexp = index - 3pi = 2 ** expd = mink(x, yB, pi).reshape(s.shape)plotContour(ax, d,r'$p=2^{0}{2}{1}={3}$'.format('{', '}', exp, pi),fsize=8)figname = 'minkowski_distance_B'fig.suptitle(' '.join([e.capitalize() for e in figname.split('_')]))fig.savefig('_output/similarity_{}.png'.format(figname), bbox_inches='tight')

运行结果如下:
请添加图片描述

7 堪培拉距离

堪培拉距离可以是曼哈顿距离的加权版本,其计算公式如下:
在这里插入图片描述
代码实现如下:

def canb(x, y):num = np.absolute(x - y)den = np.absolute(x) + np.absolute(y)return np.sum(num/den, axis = 1)def test_canberra():x = np.array([0.25, 0.25])dA = canb(x, yA)dB = canb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'canberra_distance', save=True)

上述代码运行结果如下:
请添加图片描述

8 夹角余弦距离

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。其计算公式如下:
在这里插入图片描述
代码实现如下:

def coss(x, y):if x.ndim == 1:x = x[np.newaxis]num = np.sum(x*y, axis=1)den = np.sum(x**2, axis = 1)**0.5den = den*np.sum(y**2, axis = 1)**0.5return 1 - num/dendef test_cosine():x = np.array([1e-7, 1e-7])dA = coss(x, yA)dB = coss(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'cosine_distance', save=True)

上述代码运行结果如下:

请添加图片描述

9 总结

本文重点介绍了机器学习领域中特征向量的相似性和相异性的计算公式,并给出了常见的距离计算公式和代码实现,同时给出了不同距离的图示,方便童鞋们直观的进行理解。

您学废了嘛?

10 附录

本文参考链接如下:

链接一

链接二

关注公众号《AI算法之道》,获取更多AI算法资讯。

在这里插入图片描述



注: 完整代码,关注公众号,后台回复距离 , 即可获取。

这篇关于Python机器学习之相异性度量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373474

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应