python计算机视觉-BOF图像检索

2023-11-09 00:50

本文主要是介绍python计算机视觉-BOF图像检索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BOF图像检索

      • 图像检索基本概述
      • Bag of words模型
      • Bag of features (BOF)
        • BOF算法流程
        • 提取图像特征
        • 训练字典
        • 图片直方图表示
      • 实现BOF图像检索
        • 代码
        • 运行结果

图像检索基本概述

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。
到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(简称CBIR)技术。CBIR属于基于内容检索(简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。
在检索原理上,无论是基于文本的图像检索还是基于内容的图像检索,主要包括三方面:一方面对用户需求的分析和转化,形成可以检索索引数据库的提问;另一方面,收集和加工图像资源,提取特征,分析并进行标引,建立图像的索引数据库;最后一方面是根据相似度算法,计算用户提问与索引数据库中记录的相似度大小,提取出满足阈值的记录作为结果,按照相似度降序的方式输出。
为了进一步提高检索的准确性,许多系统结合相关反馈技术来收集用户对检索结果的反馈信息,这在CBIR中显得更为突出,因为CBIR实现的是逐步求精的图像检索过程,在同一次检索过程中需要不断地与用户进行交互。

Bag of words模型

要了解「Bag of Feature」,首先要知道「Bag of Words」。
「Bag of Words」 是文本分类中一种通俗易懂的策略。一般来讲,如果我们要了解一段文本的主要内容,最行之有效的策略是抓取文本中的关键词,根据关键词出现的频率确定这段文本的中心思想。比如:如果一则新闻中经常出现「iraq」、「terrorists」,那么,我们可以认为这则新闻应该跟伊拉克的恐怖主义有关。而如果一则新闻中出现较多的关键词是「soviet」、「cuba」,我们又可以猜测这则新闻是关于冷战的(见下图)。
在这里插入图片描述
这里所说的关键词,就是「Bag of words」中的 words ,它们是区分度较高的单词。根据这些 words ,我们可以很快地识别出文章的内容,并快速地对文章进行分类。
而「Bag of Feature」也是借鉴了这种思路,只不过在图像中,我们抽出的不再是一个个「word」,而是图像的关键特征「Feature」,所以研究人员将它更名为「Bag of Feature」。

Bag of features (BOF)

BOF算法流程

1、收集图片,对图像进行sift特征提取。
2、从每类图像中提取视觉词汇,将所有的视觉词汇集合在一起
3、利用K-Means算法构造单词表。
K-Means算法是一种基于样本间相似性度量的间接聚类方法,此算法以K为参数,把N个对象分为K个簇,以使簇内具有较高的相似度,而簇间相似度较低。SIFT提取的视觉词汇向量之间根据距离的远近,可以利用K-Means算法将词义相近的词汇合并,作为单词表中的基础词汇
4、针对输入的特征集,根据视觉词典进行量化,把输入图像转化成视觉单词的频率直方图。
5、构造特征到图像的倒排表,通过倒排表快速索引相关图像。
6、根据索引结果进行直方图匹配。

提取图像特征

特征必须具有较高的区分度,而且要满足旋转不变性以及尺寸不变性等,因此,我们通常都会采用「SIFT」特征。「SIFT」会从图片上提取出很多特征点,每个特征点都是 128 维的向量。

训练字典

提取完特征后,我们会采用一些聚类算法对这些特征向量进行聚类。最常用的聚类算法是 k-means。
聚类完成后,我们就得到了这 k 个向量组成的字典,这 k 个向量有一个通用的表达,叫 visual word。
在这里插入图片描述

图片直方图表示

上一步训练得到的字典,是为了这一步对图像特征进行量化。对于一幅图像而言,我们可以提取出大量的「SIFT」特征点,但这些特征点仍然属于一种浅层(low level)的表达,缺乏代表性。因此,这一步的目标,是根据字典重新提取图像的高层特征。

具体做法是,对于图像中的每一个「SIFT」特征,都可以在字典中找到一个最相似的 visual word,这样,我们可以统计一个 k 维的直方图,代表该图像的「SIFT」特征在字典中的相似度频率。
在这里插入图片描述

实现BOF图像检索

代码

提取图像的 SIFT特征点:

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift#获取图像列表
# imlist = get_imlist('D:/pythonProjects/ImageRetrieval/first500/')
imlist = get_imlist('flowers')
nbr_images = len(imlist)#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]#提取文件夹下图像的sift特征
for i in range(nbr_images):sift.process_image(imlist[i], featlist[i])#生成词汇
voc = vocabulary.Vocabulary('ukbenchtest')
voc.train(featlist, 1000, 10)
#保存词汇
# saving vocabulary
with open('flowers/vocabulary.pkl', 'wb') as f:pickle.dump(voc, f)
print('vocabulary is:', voc.name, voc.nbr_words)

将图像添加到数据库:

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
from sqlite3 import dbapi2 as sqlite
from PCV.tools.imtools import get_imlist#获取图像列表
imlist = get_imlist('flowers')
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]# load vocabulary
#载入词汇
with open('flowers/vocabulary.pkl', 'rb') as f:voc = pickle.load(f)
#创建索引
indx = imagesearch.Indexer('testImaAdd.db',voc)
indx.create_tables()
# go through all images, project features on vocabulary and insert
#遍历所有的图像,并将它们的特征投影到词汇上
for i in range(nbr_images)[:500]:locs,descr = sift.read_features_from_file(featlist[i])indx.add_to_index(imlist[i],descr)
# commit to database
#提交到数据库
indx.db_commit()con = sqlite.connect('testImaAdd.db')
print(con.execute('select count (filename) from imlist').fetchone())
print(con.execute('select * from imlist').fetchone())

图像检索测试:

# -*- coding: utf-8 -*-
#使用视觉单词表示图像时不包含图像特征的位置信息
import pickle
from PCV.localdescriptors import sift
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist# load image list and vocabulary
#载入图像列表
imlist = get_imlist('flowers')
nbr_images = len(imlist)
#载入特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]#载入词汇
with open('flowers/vocabulary.pkl', 'rb') as f:voc = pickle.load(f)src = imagesearch.Searcher('testImaAdd.db',voc)# Searcher类读入图像的单词直方图执行查询# index of query image and number of results to return
#查询图像索引和查询返回的图像数
q_ind = 0          # 匹配的图片下标
nbr_results = 65  # 数据集大小# regular query
# 常规查询(按欧式距离对结果排序)
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]] # 查询的结果
print ('top matches (regular):', res_reg)# load image features for query image
#载入查询图像特征进行匹配
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)# RANSAC model for homography fitting
#用单应性进行拟合建立RANSAC模型
model = homography.RansacModel()
rank = {}
# load image features for result
#载入候选图像的特征
for ndx in res_reg[1:]:try:locs,descr = sift.read_features_from_file(featlist[ndx])  # because 'ndx' is a rowid of the DB that starts at 1except:continue
#get matchesmatches = sift.match(q_descr,descr)ind = matches.nonzero()[0]ind2 = matches[ind]tp = homography.make_homog(locs[:,:2].T)# compute homography, count inliers. if not enough matches return empty list# 计算单应性矩阵try:H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)except:inliers = []# store inlier countrank[ndx] = len(inliers)# sort dictionary to get the most inliers first
# 对字典进行排序,可以得到重排之后的查询结果
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ('top matches (homography):', res_geom)# 显示查询结果
imagesearch.plot_results(src,res_reg[:6]) #常规查询
imagesearch.plot_results(src,res_geom[:6]) #重排后的结果
运行结果

训练集65张图片:
在这里插入图片描述
检索的图片:
在这里插入图片描述
常规查询的结果:
在这里插入图片描述

重排的结果:
在这里插入图片描述
结果分析:
从结果可以看出,检索出来的第2,4张图片与输入的图片在形状上,纹理上,颜色上相似。第1,3,5张图片在形状纹理上相似,但是颜色不一样。从1-4是按照最相似开始排序的。重排后的图片有了变化,但是相似第二的图片其实看起来与输入的图片并不相似。
根据实验过程也发现了一些问题,对于大量数据,输入矩阵的巨大将使得内存溢出及效率低下。字典如果过大,单词会缺乏一般性,对噪声敏感,计算量大,关键是图象投影后的维数高;字典如果太小,单词区分性能差,对相似的目标特征无法表示。
参考文献1

这篇关于python计算机视觉-BOF图像检索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373336

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点